АНАЛИЗ ФОРМУЛ ПРОЧНОСТИ БЕТОНА. Анализ бетона


Анализ бетона

Химический анализ бетона

Рейтинг: 5 (100%) - Оценок: 1

В современном строительстве трудно переоценить значение качества бетона, поскольку надежность и прочность монолитных зданий напрямую зависит от состава этого строительного материала.

Химический анализ бетона проводят с целью определения его состава и концентрации всех компонентов, что необходимо перед началом любых строительных работ. Это поможет многим строителям избежать использования некачественных стройматериалов и застраховать себя от убытков, связанных с применением сырья, несоответствующего стандартам.

Факторы, от которых зависит качество бетона

Химический анализ бетона довольно трудоемкий процесс, который проводится с помощью специального оборудования. На качество бетона влияют многие факторы, главные из которых:

  • качество используемого цемента и различных заполнителей;
  • точное соблюдение технологического процесса;
  • контроль всего сырья, которое используется в процессе строительно-монтажных работ;
  • использование инновационных методов в процессе производства бетона.

Исследование качества бетона весьма важно для строительных предприятий, поскольку анализ продукта позволяется контролировать весь процесс производства. Если вам необходимо сделать химический анализ бетона, тогда квалифицированные специалисты АНО «Центр химических экспертиз» с помощью новейших методик и высокоточного оборудования проведут качественную экспертизу.

В лабораторных условиях здесь определят качество цемента и заполнителей и предоставят вам полную развернутую характеристику состава бетона. Результаты экспертизы позволят контролировать качество вашей продукции или помогут закупить бетон, полностью соответствующий технологическим требованиям.

khimex.ru

Качество бетона и способы его проверки

Результат работ по созданию бетонных и железобетонных конструкций находится в большой зависимости как от качества компонентов, использованных для составления бетонной смеси, так и от соблюдения технологических условий на каждой стадии бетонных работ.

Тщательный контроль необходимо осуществлять на следующих этапах:

  • поступление и хранение материалов, применяемых в ходе бетонных работ – песка, цемента, гравия, щебня, арматуры и пр.;
  • создание и монтаж на месте элементов арматурной конструкции;
  • создание и сборка опалубочных элементов;
  • подготовка опалубки и основания под укладку бетона;
  • составление и транспортировка смеси бетона к месту укладки;
  • уход за бетонной конструкцией в течение срока набора ею критической или расчетной прочности (отверждения).

Все компоненты будущей бетонной конструкции проверяются на соответствие нормам ГОСТов. Их характеристики анализируются в соответствии с единой методикой, специально предназначенной для лабораторий на строительных предприятиях.

Контроль качества материалов

В ходе операций по армированию проверка качества работ и материалов ведется при получении арматуры – проверяется заводская маркировка (наличие бирок), соответствие марок заявленным требованиям проектировщиков. Процессы складирования и транспортировки сопровождаются проверкой правильности размещения арматурной стали по сортам, маркам и размерам, сохранения ее качественных характеристик после доставки на строительный объект.При построении арматурных конструкций и элементов проверяется соответствие геометрической форме и габаритам, правильности выполнения сварных швов и их качеству. Выставленные в блок бетонирования и объединенные в общую конструкцию арматурные элементы анализируются на соответствие заданным размерам и положению согласно допусками.

Работы по монтажу опалубочных элементов ведутся с проверкой верности их установки, построения креплений, плотность сопряжения щитов по стыкам, соответствие собранной опалубочной формы и арматурной конструкции (обеспечивает формирование защитного слоя заданной толщины). Пространственное положение опалубки анализируется путем нивелировки и привязки к осям в нескольких отдельных секторах, верность расчетным размерам определяется промерами с помощью измерительного инструмента. Допуски при построении опалубки указаны в ГОСТ Р 52085-2003, ГОСТ Р 52086-2003 и справочной литературе. Перед тем, как будет произведена укладка бетонной смеси, поверхности опалубки проверяются на чистоту и качество нанесения смазочных материалов.

Составление и укладка бетонной смеси

Ввод компонентов смеси в миксер сопровождается тщательной проверкой дозированных порций, длительности перемешивания, плотности и степени подвижности бетона. Контроль подвижности смеси бетона проводится как минимум дважды за рабочую смену, ее показатели не должны быть на 10 мм меньше или больше расчетных, допуски по плотности – не выше 3%.

Процедура доставки бетона на стройплощадку выполняется с отслеживанием параметров смеси – на отсутствие схватывания, расслоения, потери подвижности по причине высыхания.

На месте бетонных работ важно следить за высотой сбрасывания смеси, длительности вибрирования с достижением равномерного уплотнения, препятствовать расслоению смеси, формированию в ее структуре пустот и раковин.

Виброуплотнение бетонной смеси производится под визуальным контролем, критериями служат степень ее осадки, образование цементного молочка, завершение выхода воздушных пузырей. Более точно результаты уплотнения анализируются с помощью радиоизотопных плотномеров, вычисляющих плотность бетонной смеси путем замеров степени поглощения гамма-излучения.

В процессе бетонирования конструкций значительной площади, уплотнение смеси бетона определяется с помощью нескольких датчиков цилиндрической формы, внешне напоминающих щупы, размещаемых в зависимости от толщины укладываемой смеси. Чем выше плотность бетона, тем меньше его сопротивление электрическому току, пропускаемому через бетонную смесь – работа датчиков базируется на этом принципе. Они устанавливаются вблизи вибрационных установок, сообщая оператору о достижении необходимой плотности звуковым и световым сигналом.

Оценка прочности бетона по его образцам

Выяснить полные качественные характеристики бетона возможно лишь одним способом – испытав его на прочность путем сжатия специально изготовленных бетонных кубиков до тех пор, пока не удаться их полностью разрушить.Кубики выполняются в тот же момент, когда выполняется укладка бетона, их выдерживают точно в таких же условиях, что и основные бетонные конструкции. Обычно испытание на сжатия проходят кубики длиной 160 мм.

В зависимости от класса бетона требуется изготовить по три тестовых кубика одинакового размера. Для оценки характеристик фундаментов, предназначенных под различные конструкции, кубики формируются из каждых 100 кубометров бетонной смеси. При создании массивных фундаментных конструкций, рассчитанных под установку оборудования технологического назначения, образцы для испытаний на прочность готовятся из каждых следующих 50 кубометров бетона, а для фундаментов под каркасные и тонкостенные (облегченные) конструкции кубики необходимо выполнить из каждой новой партии бетона объемом 20 кубометров.

Относительно полную оценку прочности бетонной конструкции позволяет получить бурение кернов в ее теле с последующим испытанием образцов на сопротивление сжатию.

Неразрушаемые методы проверки бетона на прочность

Помимо лабораторных исследований прочностных характеристики образцов бетона из конкретных партий существуют способы косвенной оценки бетонных конструкций и сооружений без их какого-либо разрушения. Среди них наиболее популярны механический способ, базирующийся на зависимости между поверхностной твердостью бетона и его прочностью на сжатие, а также импульсно-ультразвуковой, применение которого основывается на замерах скорости продольных волн ультразвука, направленных в бетонную конструкцию и степени их полного затухания.

Испытания прочностных характеристик армированного бетона методом механического воздействия проводятся с помощью инструмента, называемого склерометр. Рассмотрим версии этого прибора, предназначенные для выяснения прочности бетона.

Молоток Кашкарова. Его необходимо установить стороной с шариком на поверхности конструкции из бетона, затем ударить по обратной стороне обычным слесарным молотком. После удара на бетонной поверхности и на эталонном стержне останутся выбоины, измерение которых позволит определить поверхностную прочность бетона на сжатие. Конструкция молотка Кашкарова должна соответствовать нормам ГОСТ 22690-88.

Молоток Шмидта. В его корпусе расположен ударный стержень – сняв блокировку необходимо полностью его выдвинуть, затем прижать к бетонной поверхности, вжимая ударный стержень в корпус до тех пор, пока он не полностью не погрузиться в него и не ударит по бетону. Удар стержневого молотка вызовет отскакивание прибора и перемещение измерительного механизма по шкале с разметкой – в процессе важно удерживать инструмент строго перпендикулярно к поверхности бетонной конструкции. Дистанция отскока молотка – зависит от поверхностной прочности бетона, т.е. чем она выше, тем на большее расстояние переместиться молоток. Принцип действия современных аналогов молотка Шмидта, снабженных электронной измерительной шкалой, не отличается от его механических аналогов.

Специальные приборы для ультразвуковых исследований бетона, к примеру, УКБ-1, также позволяют определить прочность бетонных конструкций. Они генерируют ультразвук, по скорости движения которого через толщу бетона определяются его прочностные характеристики. При соответствии технологических условий определенным требованиям – применение материалов со схожими характеристиками, соответствие технологии установленным нормативам и др. – точность данных по прочности бетона будет достаточно высока.

Контроль качества бетонных работ зимой

В условиях низких температур соблюдения процедур, описанных выше, будет недостаточно. Помимо мер качественного контроля необходимо предпринять дополнительные действия, которые будут рассмотрены далее.

Проверки состояние бетонной смеси в течение всего срока приготовления очередной партии ведутся не реже одного раза в 120 минут. При поступлении в бетоносмеситель непрогретый наполнитель (щебень, гравий и песок) не должен содержать снега и льда, смерзшихся зерен. В процессе получения смесей бетона с содержанием противоморозных добавок необходимо замерять температуру сухих компонентов и воды перед их вводом в смеситель, определять содержание солей и температуру готовой смеси на ее выходе.

Транспортировка бетона проводится с разовой проверкой за смену состояния укрывающих и утеплительных материалов, качества обогрева и теплоизоляции емкостей, в которых смесь перевозиться и в которые поступает после доставки.

Если перед укладкой бетонной смеси выполняется ее разогрев с помощью электрического оборудования, то требуется контролировать ее температуру в ходе разогрева каждой новой порции.

На стройплощадке, непосредственно перед началом работ по укладке смеси, проводится обследование внутренних стен опалубки, основания бетонируемой площадки и арматурной конструкции на отсутствие снега, льда. Внешние стенки опалубки должны быть теплоизолированы в соответствии с технологическими условиями, проведет отогрев основания бетонируемого участка и зон его сопряжения по стыкам с опалубкой.

В процессе укладки бетона ведется контроль над его температурой на стадии выгрузки из транспортного средства, затем температурные показатели снимаются еще раз, но уже по завершении работ по размещению бетона. Не закрытые опалубкой участки бетонирования следует также оценить на технологическое соответствие по гидроизоляционным и теплоизоляционным характеристикам.

Замеры температуры бетона, проходящего стадию выдерживания в условиях зимы, выполняются в следующем порядке:

  • при использовании технологий предварительного разогрева, «термоса» и обогрева в заданных температурно-влажностных условиях (тепляке) следует проводить замеры температур раз в два часа в течение первых суток, на менее двух раз в течение смены на протяжении следующих трех суток и однократно за 24 часа в течение дальнейшего срока выдерживания;
  • при укладке бетона, содержащего противоморозные добавки, его температуру необходимо измерять троекратно в течение каждого дня с момента завершения работ до тех пор, пока им не будет достигнута проектная прочность;
  • при проведении электропрогрева бетонной конструкции, в течение набора ею температуры с интервалом до 10оС в час, температуру следует мерять через каждые два часа, далее как минимум два раза за время каждой смены.

После того, как бетонная конструкция пройдет срок выдерживания и набора проектной прочности, а также будет выполнен демонтаж опалубки, проводятся замеры температуры воздуха как минимум раз в течение каждой рабочей смены. Температурные данные по бетонной конструкции получают путем высверливания узких скважин и погружения в них термометров, а также применения специальных технических термометров. Следить за изменениями температуры крайне важно в секторах, потенциально подверженных высокому охлаждению (выступы и углы), а равно и нагреву – участки, близкорасположенные к нагревательным электродам, зона прямого контакта с термоактивными элементами опалубки. Учет сведений по температурам ведется в специальной ведомости.

Если проводится обогрев бетона при помощи электродов, необходимо два раза за каждую смену замерять силу тока и напряжение в питающем трансформаторе с внесением этих данных в журнал.

Лабораторные испытания образцов бетона на прочность выполняются в соответствии со стандартной процедурой, приведенной выше. Кроме того на месте бетонных работ создаются дополнительные образцы-кубики, предназначенные для проверки на прочность:

  • при бетонировании с электронагревом и по методу «термоса» проводятся испытания трех кубиков после того, как температура конструкции снизится до расчетного уровня;
  • при работах с бетоном, содержащем противоморозные добавки, первые три образца исследуются после понижения температуры конструкции до расчетной для добавок, затем три кубика испытываются после выхода бетона на положительную температуру и выдерживания их в течение 28 суток при нормальных условиях. Последние три кубика-образца тестируются на прочность перед тем, как основная конструкция будет нагружена согласно проектным расчетам.

В ситуации, когда образцы для испытаний содержатся при низких температурах, необходимо прежде выдержать их при температуре от +15 до +20оС, а после проверять их прочностные характеристики.

Если набор прочностных характеристик бетонной конструкции обеспечивается при помощи электрических элементов, индукционном или инфракрасном нагреве, либо в термически активной опалубке, то получение образцов для испытаний такого бетона чаще всего невозможно. Единственный способ отслеживать прочность бетона в таких ситуациях – строгое обеспечение расчетных температурных режимов.

Помимо оценки прочности, проводимой путем разрушения кубиков-образцов и высверленных кернов, необходимо вести проверку неразрушающими методами – к примеру, с применением молотков Шмидта и Кашкарова. Важно тщательно регистрировать каждую операцию в рамках контроля качества, производимую в соответствии с технологиями бетонных работ, поскольку при приемке объекта этак документация будет предъявлена комиссии. Напоминаем – приемка бетонного основания, блока бетонирования, куда предстоит уложить смесь бетона, оформляется актом, далее ведутся журналы по контролю температур в заданном порядке и в соответствии с установленными формами.

10.01.2015

Автор текста: Абдюжанов Рустам

Понравилась статья? Поделись с друзьями:

Данный текст статьи защищен авторскими правами! Любое копирование возможно, только после письменного согласия администрации.

Теги: укладка бетона качество бетона

www.domastroim.su

Сравнительный анализ прочности бетона...

Я говорю своим ученикам: вы должны вкладывать в работу три вещи. Первая – это усердие, вторая – любовь, а третья – страдание. Гленн Мёркатт (р. 1936)     /      Никогда не отказывайтесь от работы, считая ее ниже своего достоинства. Джулия Морган (1872-1957)      /      Остерегайтесь чрезмерной самоуверенности, особенно в отношении строительных конструкций. Касс Гилберт (1859-1934)      /      Противоречия порождают жизненную силу. Кэндзо Танге (1913-2005)      /      Мы не выполняем работу. Я считаю, что, по сути, мы – первооткрыватели. Гленн Мёркатт (р. 1936)      /      Меньше значит больше. Людвиг Мис ван дер Роэ (1886-1969)      /      1) Сексуальная жизнь 2) Сон 3) Домашние животные 4) Садоводство 5) Личная гигиена 6) Защита от непогоды 7) Домашняя гигиена 8) Обслуживание автомобиля 9) Приготовление пищи 10) Отопление 11) Солнечное освещение 12) Работа: Все эти требования необходимо учитывать при строительстве дома. Ханнес Мейер (1889-1954)      /      Очень часто приходится пренебрегать мнением клиентов в их же интересах. Джон Йохансен (1916-2012)      /      Строительство – это не наука. Наука изучает отдельные явления, чтобы вывести общие законы. Инженерное проектирование использует эти законы, чтобы решать конкретные практические задачи. В этом оно ближе к искусству или ремесленничеству. Ове Аруп (1895-1988)      /      Я не бог, но я гарантирую. Иван Баяндин (р.1956).

Сравнительный анализ прочности бетона...

Сравнительный анализ прочности бетона, определенной методами разрушающего и неразрушающего контроляПри обследовании несущих строительных конструкций зданий и сооружений, в соответствии с источником [5], определяется прочность бетона на одноосное сжатие.

Известно, что в бетонных и железобетонных конструкциях прочность бетона определяют механическими методами неразрушающего контроля по ГОСТ 22690-88, и разрушающего контроля образцов, отобранных из конструкций по ГОСТ 28570-90 и контрольных образцов по ГОСТ 10180 90.

Для определения прочности бетона в конструкциях методами неразрушающего контроля, в соответствии с требованиями гл. 3 ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами неразрушающего контроля», предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы). При обследовании конструкций ГОСТ допускает применять градуировочную зависимость, установленную для бетона отличающегося от испытываемого с уточнением ее в соответствии с методикой, приведенной в приложении 9 источника [1].

При построении градуировочной зависимости проводят испытания предварительно изготовленных кубов бетона, обжатых в прессе, известными методами неразрушающего контроля (пластической деформации, ударного импульса, упругого отскока), образцов, отобранных из конструкции на участке, на котором предварительно проводятся вышеназванные испытания с последующим их разрушением.

Предприятия – изготовители современных приборов неразрушающего контроля в процессе их конструирования и апробирования формируют базовые градуировочные зависимости на основании результатов параллельных испытаний образцов – кубов, изготовленных из бетонов основного ряда классов с различными видами заполнителей, неразрушающими методами по ГОСТ 22690-88 и затем в прессе (разрушением) по ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам».

Приборы оснащаются базовыми градуировочными зависимостями и закладываются в электронную программу прибора, либо, если прибор механического действия, поставляются с градуировочными зависимостями в виде графиков, таблиц, формул.

Практика показывает, что значения прочности бетона, определенные приборами неразрушающего контроля, в ряде случаев, существенно отличаются от значений прочности бетона, определенных разрушающим контролем образцов, отобранных из обследуемой конструкции.

В статье дается сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Определены причины расхождений величин прочности бетона. Определен коэффициент Кс для корректировки базовых градуировочных зависимостей, в соответствии с методикой приложения 9 источника [1].

Исследовался тяжелый бетон сборных и монолитных железобетонных конструкций строительных объектов Перми и Пермского края.

При испытаниях бетона использованы следующие приборы неразрушающего контроля: гидропресс измерителя прочности бетона «Оникс – ОС» (предприятие – изготовитель - Научно-производственное предприятие «Интерприбор», г. Челябинск), реализующий метод отрыва со скалыванием – локального разрушения путем вырыва стандартного анкерного устройства №III или №II; склерометр «ОМШ-1 ВК 15.00.000 ПС» (предприятие – изготовитель - Научно-технический центр средств контроля качества «Контрос», г. Солнечногорск, Московской области, реализующий метод упругого отскока, измеритель прочности бетона ИПС-МГ4 (предприятие – изготовитель - Специальное конструкторское бюро «Стройприбор», г. Челябинск), реализующий метод ударного импульса.

Испытания образцов, отобранных из конструкций, разрушающим контролем, проведены следующими лабораториями:

1. Региональная испытательная лаборатория цементов Пермского Государственного технического университета (Кафедра строительных материалов и специальных технологий).

2. ООО «Испытательная лаборатория Оргтехстроя» (Аттестат аккредитации Ростехрегулирования № РОСС RU.0001.21 СЛ 55 от 04 марта 2009 г.).

3. Лаборатория ООО «Краснокамский завод ЖБИ», г. Краснокамск, Пермского края.

В нижеприведенных таблицах №№1 - 4 проведены сопоставления результатов, полученных при испытаниях бетона конструкций методами разрушающего и неразрушающего контроля, на конкретных объектах. Для подсчета погрешности между лабораторными испытаниями (прессом) и приборами неразрушающего контроля за основной (100%) принят метод лабораторных испытаний (пресс).

Таблица 1

Определение прочности бетона конструкций фундамента насосной станции промышленных стоков ЦБК «Кама» в

г. Краснокамске Пермского края

Таблица 2

Определение прочности бетона контрольных образцов (стандартных кубов), изготовленных на ООО «Краснокамский завод ЖБИ», г. Краснокамск Пермского края. (Испытания проведены лабораторией завода)

Таблица 3

Определение прочности бетона диафрагм жесткости монолитного железобетонного здания жилого дома по ул. Вильямса, 37 «б» в Орджоникидзевском районе г. Перми

Таблица 4

Определение прочности бетона конструкций монолитного железобетонного ростверка фундамента здания по ул. Крисанова, 12 «а» в Ленинском районе г. Перми

На основании анализа и синтеза результатов испытаний выявлены следующие причины расхождений величин прочности тяжелого бетона на одноосное сжатие методами разрушающего контроля в сравнении с неразрушающими методами контроля:

1. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и приборами неразрушающего контроля ОМШ – 1 (методом неразрушающего контроля – упругого отскока) и ИПС-МГ4 (методом неразрушающего контроля – ударного импульса) объясняется тем, что приборы неразрушающего контроля по условиям испытаний использовались для определения прочности поверхностного слоя. Поверхностный слой характеризуется по составу меньшим количеством крупного заполнителя и большим количеством цементного раствора. Вследствие этого поверхностный слой обладает меньшими прочностными характеристиками, чем основной массив, и класс бетона поверхностного слоя на одну – две ступени ниже класса бетона основного массива конструкции.

2. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и методом неразрушающего контроля – отрыва со скалыванием (прибор «ОНИКС – ОС» минимальна и находится в пределах допускаемой относительной погрешности прибора (2%). Тем самым полученные данные подтверждают возможность использования метода неразрушающего контроля – отрыва со скалыванием, без установления индивидуальных градуировочных зависимостей при использовании стандартного анкерного устройства, что согласуется с требованиями п.3.14 источника [1]. Анализ данных результатов предполагает также, что на глубине 30 – 40 мм от поверхности бетонных конструкций прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала при достаточном качестве основных циклов производства работ (укладки, уплотнения, прогрева при отрицательных температурах, выдерживания бетона).

Анализом результатов испытаний установлено:

1. независимо от способа исследования железобетонных конструкций, прочность бетона имеет тенденцию нарастания с поверхности в глубину массива, и на некоторой глубине от поверхности прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала. Следовательно, для достоверности получаемых значений прочности неразрушающими методами (пластической деформации, ударного импульса, упругого отскока) необходимо перед испытаниями снимать поверхностный слой бетона.

2. устойчивая закономерность: чем выше прогнозируемый (проектный) класс исследуемой конструкции, тем большая разница полученных величин прочности в сравнении разрушающего метода (пресс) с неразрушающими методами контроля. Выявленная закономерность предполагает следующее:

2.1. Для малых и средних классов бетона (В7,5 – В25) нарастание прочности с поверхности в глубинные слои плавное, то есть прочность поверхностных слоев соизмерима с прочностью основного массива;

2.2. Для высоких классов бетона (В25 – В40) нарастание прочности с поверхности в глубинные слои резкое, то есть прочность поверхностных слоев значительно ниже прочности основного массива;

2.3. Для малых и средних классов бетона (В7,5 – В25) корректно использование неразрушающих методов контроля с базовыми настройками приборов, полученными при сопоставительных испытаниях с разрушающим методом в процессе конструирования прибора на предприятии – изготовителе, согласующимися с требованиями источника [1];

2.4. Для высоких классов бетона (В25 – В40) использование неразрушающих методов контроля допустимо только в строгом соответствии табл. 1, п.3.14 и прил. 9 источника [1], то есть с корректировкой коэффициента Кс градуировочной зависимости для бетонов, отличающихся от испытываемых (по составу, возрасту, условиям твердения, влажности) в соответствии с предлагаемой методикой источника [1].

Список литературы

1. ГОСТ 22690 88. Бетоны. Определение прочности механическими методами неразрушающего контроля. М., 1989 г.-16 с.

2. ГОСТ 18105 86. Бетоны. Правила контроля прочности. М., 1987 г.- 15 с.

3. ГОСТ 28570 90. Бетоны. Методы определения прочности по образцам, отобранным из конструкций. М., 1991 г.- 15 с.

4. ГОСТ 10180 90. Бетоны. Методы определения прочности по контрольным образцам. М., 1991 г.- 27

5. Правила обследования несущих строительных конструкций зданий и сооружений. СП 13-102-2003/ Госкомитет РФ по строительству и жилищно-коммунальному комплексу (Госстрой России). М., 2004 г.-27 с.

 

xn--80aaicuccnzegqmjfk.xn--p1ai

Как производится определение прочности бетона неразрушающими методами

Комментариев:

Рейтинг: 70

Оглавление: [скрыть]

  • Механические методы исследования показателей бетонной смеси
    • Методы проверки бетона при помощи молотков Физделя и Кашкарова
    • Исследования свойства бетона при помощи склерометра и пистолетов
  • Ультразвуковые способы исследования параметров бетона

На сегодняшний день свойства бетонного раствора полностью зависят от параметров его прочности в застывшем состоянии. Поэтому определение прочности бетона является необходимым мероприятием, на основании которого делается вывод о соответствии материала принятым стандартам. Так, к характеристикам прочности необходимо отнести показатели во время сжатия, изгиба, растяжения, а также уровень однородность смеси. Качественная бетонная смесь будет успешно противостоять механическим ударам и воздействию окружающей среды.

Ультразвуковой метод помогает быстро определить прочность бетонных стен и перекрытий.

Сегодня методы определения прочности бетона подразделяются на 2 вида: осуществляющиеся при помощи контроля, названного неразрушающим, и производимые при помощи разрушающего контроля. Методы первого вида, в свою очередь, бывают механическими и ультразвуковыми. При помощи данных способов могут определяться не только прочность, но и показатели морозоустойчивости, влагонепроницаемости, влажности и толщины защитного слоя материала, используемого при строительстве.

Механические методы исследования показателей бетонной смеси

Таблица видов бетона.

Самый старый и популярный способ определения прочности материала на сжатие называется методом стандартных образцов. Для проведения исследования из бетонной смеси изготавливаются контрольные образцы, представляющие собой кубы с длиной сторон в 20 см. Для проведения испытаний кубы должны иметь срок выдержки не менее 28 дней. Затем готовые образцы устанавливаются под пресс и сжимаются до полного разрушения. Показатели нагрузки, при которых произошло разрушение, фиксируются, а затем с их помощью осуществляется расчет прочности монолита.

Неразрушающий контроль бетона производится специальными механическими приспособлениями. При этом используются методы, определяющие свойства монолита при воздействии на него определенными инструментами. Учитываются показания приборов при таких манипуляциях, как скалывание, отрыв, пластическая деформация и некоторые другие.

Вернуться к оглавлению

Принцип действия испытательных механизмов основан на показателях глубины попадания прибора в толщу поверхностного слоя бетонного монолита. В качестве примера можно рассмотреть молоток Физделя, при ударах которым на поверхности материала остаются лунки. Диаметры лунок и определяют прочностные характеристики бетона.

Если существует необходимость произвести испытания прочности перекрытий уже построенных объектов, все поверхности следует очистить от краски, шпаклевки или штукатурки.

Устройство молотка Кашкарова.

Затем осуществляются 10-12 средних по силе ударов по поверхности участка, выбранного для испытания. Отпечатки от молотка должны находиться на расстоянии не менее 3 см друг от друга.

После этого при помощи штангенциркуля и специальной линейки производятся измерения диаметров лунок. Каждое измерение производится с точностью до десятых долей миллиметра сначала в одном направлении лунки, затем в строго перпендикулярном. На основании полученных сведений и данных о диаметре отпечатков лабораторных образцов, взятых за стандарт, составляется тарировочная кривая, позволяющая произвести определение прочности бетона на сжатие.

Кроме того, определить прочностные характеристики монолита можно и при помощи молотка Кашкарова. Принцип действия данного инструмента так же, как и молотка Физделя, основан на свойствах пластической деформации. Конструкционно молоток Кашкарова представляет собой прибор, в который, кроме рабочего органа, введен и контрольный стержень. За счет этого прибор оставляет не одинарный, а двойной отпечаток. Один располагается на поверхности исследуемого объекта, а другой — на контрольном стержне. Анализ отпечатков и оставленных диаметров лунок позволяет произвести расчеты прочности бетона на сжатие.

Вернуться к оглавлению

Таблица соотношения прочности бетона.

Инструменты, которые применяются для определения прочностных характеристик бетонного монолита на основании свойств упругого отскока, оснащены стержневым ударником, или бойком. Примером таким инструментов могут служить пистолеты Борового и ЦНИИСКа, склерометр КМ и молоток Шмидта.

Исследования определяют величину силы отскока ударника, которая при испытаниях отражается на шкале механизма. Как правило, сила энергии пружины при опыте должна иметь постоянное значение.

Спуск стержневого ударника производится самостоятельно при соприкосновении инструмента с поверхностью. В склерометр КМ встроен боек, имеющий определенное значение массы. При помощи пружины, которой задана жесткость, производится удар по ударнику из металла, прижатому к испытываемой поверхности.

Методы контроля прочности бетона, основанные на показателях отрыва со скалыванием, позволяют определить характеристики монолита не на поверхности, а в теле элемента. Для исследований используются участки, лишенные металлической арматуры.

Методы установления прочности бетона.

В толщу бетона устанавливаются специальные анкеры, при помощи которых затем производится исследование прочностных характеристик бетона неразрушающим способом.

На сегодняшний день описанные методы неразрушающего контроля прочности бетона считаются самыми точными, так как используют для расчетов зависимость, в которой могут изменяться всего лишь 2 параметра: величину фракций наполнителя бетонного раствора и его тип. При этом недостатками неразрушающего контроля прочности бетона является высокая трудоемкость в комплексе с невозможностью использования данных методов при высокой армированности материала. Кроме того, при испытаниях происходит частичное повреждение поверхности исследуемого монолита.

Вернуться к оглавлению

При исследовании прочностных характеристик бетонных перекрытий ультразвуковым неразрушающим методом используются специальные приборы, осуществляющие сквозное УЗ прозвучивание. За счет этого можно определить характеристики не только поверхностных слоев, но и толщи бетонного монолита. Принцип работы такого оборудования основан на связи, существующей между скоростью или временем распространения ультразвука и прочностью материала.

При этом метод прозвучивания может осуществляться в прямом или поперченном направлении. Как правило, использование поперечного направления применяется при исследовании линейных сборных конструкций, коими являются колонны, ригели или балки. Приборы, преобразующие ультразвук, устанавливаются с двух сторон конструкции противоположно друг другу.

Прямым, или поверхностным прозвучиванием обычно испытываются ребристые, плоские или многопустотные стеновые панели или перекрытия. При этом прибор устанавливается только с одной стороны исследуемой поверхности. И при первом, и при втором способе неразрушающего контроля прочности бетона необходимо создать акустический контакт между поверхностями прибора и испытываемой конструкции. Для этого используется какое-либо контактное вязкое вещество, например, солидол.

Приборы, осуществляющие ультразвуковое исследование толщи бетона, состоят из датчиков и электронного блока. Благодаря им можно получить следующие данные о состоянии бетонного монолита:

  • о параметрах однородности, прочности, плотности и упругости;
  • о форме А-сигнала;
  • о наличии и месте расположения дефектов.

Приборы отправляют волны, а затем принимают их и преобразуют в визуальные сигналы, которые указывают на состояние конструкции.

Как правило, инструменты, осуществляющие неразрушающий контроль бетона, в наши дни применяются для определения соответствия реальной марки бетона, заявленной покупателям. Кроме того, ультразвуковой метод позволяет контролировать прочность бетона, при которой можно осуществлять распалубку и следить за дальнейшим состоянием конструкции. Учитывая это, все приборы должны обладать точностью и легкостью в использовании, чтобы их мог применять как специалист, так и неквалифицированный сотрудник.

Наряду с перечисленными методами неразрушающего контроля бетонных конструкций существуют и другие способы исследования (инфракрасный, акустическо-вибрационный, основанный на показателях электрического потенциала, акустико-эмиссионный и некоторые другие), но они отличаются высокой сложностью и почти не применяются в широком строительстве.

tolkobeton.ru

vest-beton.ru

Класс и марка бетона. Анализ

На сегодняшний день при реализации любого строительного объекта не обходится без использования бетона. Бетон изготавливается на основе гравиевых, цементно-песчаных и иных видов смесей с добавлением воды, которая тщательно подбирается самими специалистами. С помощью этого стройматериала реализуются многие задумки архитекторов, его можно назвать своего рода скелетом любого современного сооружения.

Бетон применяется в процессе строительства гидросооружений, мостов, фундаментов, при помощи данного материала возводятся монолитные постройки, его используют во время строительных работ на автомобильных дорогах, аэропортах и многих других объектах.

Для различного типа и вида строительных работ применяется разный класс и марка бетона. А что такое класс и марка бетонной смеси, и как правильно запомнить суть этих определений? Марка показывает определенную разновидность материала стандартной прочности, в то время как класс указывает на степень усиления его прочностных показателей. Другими словами, чем больше класс у строительного материала, тем лучшими прочностными показателями он способен отличиться.

klass-i-marka-betona-analiz-2

На сегодняшний день все строительные компании используют классификацию бетонных смесей. Она зависит от конкретных показателей, которые начинают сказываться уже на первых этапах строительных работ. При этом характеристика класса и марки бетона в обязательном порядке должна соответствовать необходимым требованиям, которые затрагивают однородность материала, гидростойкость, его термостойкость и прочностные показатели.

Тест, определяющий класс и марку материала

Прочность бетонной смеси можно определить путем оказания растяжения и давления на тестируемый образец, который, как правило, представляет из себя фигуру цилиндрической формы.

Термостойкость бетонных изделий или показатель морозоустойчивости определяется методом воздействия нормальных и низких температур на образец. При этом бетон, прошедший данное тестирование, становится прекрасным вариантом для использования в процессе строительства в районах, обладающих низкими температурными показателями.

Гидростойкость бетона проверяется непроницаемостью водной среды. В связи с этим данные изделия широко используются во время строительства объектов и сооружений, располагающихся в непосредственной близости с водой.

Немаловажным фактором промышленного производства бетонной смеси выступает и однородность материала.

klass-i-marka-betona-analiz-3

В классификации бетонных изделий и присвоению марки результаты исследований различных образцов лавируют по показателю прочности, начиная от наименьшего и заканчивая наибольшим значением. Неотъемлемую роль в достижении наилучшего качества любого материала играют его компоненты, будь то щебень, гравий, песок, марка цемента и другие. Помимо этого, немаловажным фактором выступает технология, по которой была изготовлена бетонная смесь, и степень автоматизации производственного процесса. При этом в некоторых свойствах готовой продукции гарантированный коэффициент класса бетонных изделий определяется показателем 0.95.

Стоит отметить, что класс и марка бетона играют не последнюю роль в процессе выбора идей, а также во время реализации строительного объекта. При этом квалифицированные специалисты, воплощая в реальность поставленные задачи, способны найти данному строительному материалу достойное применение.

prostrouky.ru

АНАЛИЗ ФОРМУЛ ПРОЧНОСТИ БЕТОНА

СМЕШАННЫЕ ГИПСЫ ПРОИЗВОДСТВО

В современной технологии бетона принято считать, что. проч­ность бетона Rf,, твердеющего в нормальных условиях, зави­сит, главным образом, от активности цемента Яц и от водоце - ментного отношения В/Ц. Эта зависимость выражается форму­лой общего вида:

Проф. Н. М. Беляев на основе экспериментальных данных выразил зависимость прочности бетона от активности цемента и водоцементного отношения в виде следующих формул:

3» (1)

3,5 (B/Z/F

Для щебеночного бетона; а для бетона с гравийным заполнением

3

4 (В/Ц)

Где /?28—предел прочности бетона при сжатии в возрасте 28 дней.

Как можно видеть, формулы (1 и 2) отличаются лишь коэ- фициентами в знаменателе и при том эмпирически получен­ными.

Для определения прочности бетона, приготовленного по стандартной методике, предложено пользоваться формулами (1) и (2).

По формулам проф. Н. М. Беляева прочность бетона зави­сит только от активности цемента и водоцементного1 отношения с поправкой на вид заполнителя.

Формулы проф. Н. М. Беляева в том виде, как они предло­жены их автором, позволяют выяснить, в каких случаях воз­можно получить прочность бетона, равную активности цемента.

Для формулы (1) В/Ц принимается равным 0,43. Подстав­ляя это значение в формулу (1), получают:

F? = __ __ Г)

28 ~~ 3,5(0,43)1-5 3,5-0,286 ~ ц'

Для формулы (2) при В/Ц=0,40 получается:

Г) ____ ^?Ц28 __________ Кц28 __ Г>

^ 4(0,4)1,5

Оказывается, прочность бетона во всех без исключения слу­чаях будет равна активности цемента, если бетон на щебеноч­ном заполнении будет затворяться при В/Ц=0,43, а бетон на гравийном заполнении будет затворяться на В/Ц=0,40.

Отсюда можно сделать следующие выводы.

1) При указанных водоцементных отношениях (0,40 и 0,43) прочность бетона любого возраста равна активности цемента, определенной для соответствующего возраста. С увеличением активности цемента пропорционально возрастает прочность бе­тона.

2) Ррочность бетона равна активности цемента независимо от нормальной густоты, характеризующей цемент. Разница меж­ду величинами нормальной густоты портландцементов практи­чески равна 20—30%, а для пуццолановых портландцементов еще более, но формулами Н. М. Беляева это не учитывается.

3) Прочность бетона зависит в данном случае только от прочности цементного камня, так как влияние, прочности - за­полнителя никак не учитывается, если только прочность само­го заполнителя не ниже прочности получаемого бетона.

В какой мере эти выводы являются справедливыми как в данном случае, так и в смежных с ним случаях?

Первый вывод, что возраст, при котором определена актив­ность вяжущего, должен быть в соответствии с возрастом и с условиями твердения приготовляемого из него бетона, не вы­зывает сомнения, так как иначе должны быть подобраны до­полнительные коэфицйенты, причем для различных цементов различные.

Положение, что прочность бетона зависит от активности вя­жущего f(Re) правильно, но для цементов, имеющих разную нормальную густоту, как установлено, имеются отклонения.

Второй вывод, что прочность бетона находится в полном соответствии с положением R6=f(B/Ll) независимо от его нор­мальной густоты, не подтверждается экспериментальными дан­ными; так, например, цементы одной и той tee активности, но с разными нормальными густотами, будучи затворены при од­ном, и том же В/Ц, дают цементные камни неодинаковой проч­ности: у цемента с меньшей нормальной густотой прочность получается меньше. Следовательно, второе положение либо не подтверждается, либо это есть частный случай.

Частный случай возможен только один: водоцементное от­ношение при затворении соответствует нормальной густоте це­мента, при которой определена его активность. Этот, единст­венно возможный частный случай может быть рассмотрен по формуле Н. М. Беляева:

Что собой представляет эмпирический коэфициент 4 и дей­ствительно ли он характеризует собой влияние крупного запол­нителя? Для ответа на этот вопрос необходимо математическое выражение гиперболы преобразовать в новое математическое выражение параболы, чтобы установить зависимость прочности от отношения нормальной густоты к водоцементному отношению

= f)1S=/?«'

Где N — нормальная густота цементного теста;

W — водоцементные отношения.

В последней формуле ясно видно, что прочность цементного камня у одного и того же цемента зависит от расхода вяжуще­го. При равных расходах, т. е. когда вода затворения равна нормальной густоте, прочности равны; при уменьшении расхода цемента прочность падает и наоборот. Показатель степени ха­рактеризует вяжущее и, по нашему мнению, зависит от его удельного веса.

Совершенно очевидно, что коэфициент 4 не есть характери­стика влияния крупного заполнителя, а является характеристи­кой нормальной густоты вяжущего, при котором определена его активность. Если это так, то при изменившемся водоцемент - ном отношении должна, как было указано выше, изменяться и прочность бетона. Это положение может быть проверено на формуле Н. М. Беляева также и для щебеночного заполнителя:

*б== ^(зда^5)R«' Где Ra равно предыдущей активности цемента.

В данном случае получается то же самое, что и для гра­вийного щебня: нормальная густота вяжущего соответствует водоцементному отношению, т. е. расходы цемента одинаковые; только в этом случае прочность бетона будет равна активно­сти вяжущего.

Но в обоих случаях был принят цемент один и тот же, а следовательно, и его нормальная густота осталась без измене­ния как для гравийного, так и для щебеночного бетона. В фор­мулах же получается изменение нормальной густоты, т. е. как будто получается противоречие. Однако противоречие это толь­ко кажущееся, и оно имело бы место, если бы не было постав­лено условие, что вода учитывается только свободная, не по­глощенная заполнителями.

Следовательно, как для гравийного заполнителя, так и для щебеночного определенная нормальная густота не является дей­ствительной, а условной и соответствующей полному количеству воды затворения без учета поглощения ее заполнителем. Дей­ствительно же воды, пошедшей на гидратацию цемента, мень­ше, и она теоретически должна соответствовать именно тому количеству воды, при котором была определена активность це­мента.

Весьма существенным является вопрос, какое же количест­во водыФ должно пойти при определении активности цементов по стандарту при разной нормальной густоте; так, например, если нормальная густота в одном случае измерялась 20%, а во втором — 30%, то задача эта решается следующим образом: 20 30

—- + 1 %=6% от веса навески и--------- Ь 1 % = 8,5%; значит, в

4 4 Первом случае ВЩ = =~ 0,24, а во втором

= 80w =034 • 200-100

Как видно, диапазон в водоцементном отношении очень ве­лик, и свободной воды на гидратацию остается различное ко­личество При допущении, что на молекулярное смачивание песка тратится 6% воды от его веса, получается в первом слу­чае 800-0,06—600-0,06=12 г, во втором — 800 • 0,085—600Х Х0,06=32 г. Таким образом, в первом случае имеется нехватка воды на гидратацию, а во втором—избыток, что не позволяет считать цементы равноценными при условии их затворения на большем В/Ц.

Все проведенные экспериментальные работы, использован­ные учеными для вывода формул, очевидно, были основаны на цементах со средней нормальной густотой 0,25—0,26, а следо­вательно, на среднем водоцементном отношении В/Ц***0,29—0,30.

Необходимо рассмотреть случай, когда прочность бетона равна активности цемента, т. е. /?б=#ц Для случаев на гравии и на каменном щебне.

Пусть расход материалов на 1 м3 гравийного бетона вы­ражается в следующих количествах: 1 350 кг гравия, 450 кг пес­ка и 450 кг цемента при В/Ц—0,40; следовательно, воды на за- творение взято: 450 - 0,4=180 л. Поглощается воды заполнение* 450- 0,06 + 1 350 • 0,015=47,3 л.

Свободной воды останется 180—47,3=132,7 л, что составит ВЩ= -^-=0,296.

1 450

Это как раз то количество, при котором примерно опреде­лена активность цемента.

Для щебеночного бетона ВЩ—0,43, т. е. расход воды соста­вит 450 • 0,43=193,5 л, или на 193,5—180=13,5 л больше, чем при гравийном бетоне. Эта разница составляется из увеличен­ного расхода песка и увеличения поверхности смачивания щеб­ня в сравнении с гравием. Таким образом, потребность воды на смачивание смеси увеличилась на 0,7%, что бесспорно, и это практически всегда наблюдается.

Из изложенного выше становится совершенно очевидным, что прочность бетона зависит исключительно от прочности це­ментного камня, зависящей в свою очередь от водоцементного отношения, активности цемента н нормальной густоты, при ко­торой определена активность цемента. Заполнитель, если его прочность не менее заданной марки бетона, не оказывает влия­ния на прочность последнего при условии, что количество це­ментного теста достаточно, и удобообрабатываемость бетона обеспечена.

С этой точки зрения следует рассмотреть формулы, выра­жающие зависимость прочности бетона от активности цемента и В/Ц отношения при гравийном заполнении:

Яб = 0,50 Яц (Ц/В-0,5) и при щебеночном: R6 = 0,55 Rn(ЩВ—0,5).

Решая формулы попрежнему из условия, что прочность бе­тона равна активности цемента, получаем, что в формуле (3) при В/Ц=0,4 и в формуле (4) при В1Ц=0,43 прочность бетона. равна активности цемента; т. е. и в этом случае имеется пол­ное соответствие с уже рассмотренными выше формулами Бе­ляева (1) и (2).

Весьма существенным является вопрос, в каком случае воз­можно равенство прочности бетона и активности цемента? Очевидно, что это возможно только в том случае, если цемент затворен в идентичных условиях, так как кривые прочности це­ментного камня и бетона следуют одному и тому же закону и не могут иметь точек пересечения. Если имеется равенство, то совершенно очевидно должно быть только совпадение кривых; а если это так, то в формулах необходимо отразить и нормаль­ную густоту затворения, при которой определена активность цемента.

Необходимо проверить это положение на формулах (3) и (4). Примем для простоты, так же как обычно без изменения, за начало координат на оси абсцисс Ц! В=0,5. Значит, при ВЩ=2 прочность RБ, а также и Ra =0. В общем виде эта фор­мула представляется так:

АНАЛИЗ ФОРМУЛ ПРОЧНОСТИ БЕТОНА

Тде W — водоцементное отношение; N — «нормальная густота.

Решая эту формулу с теми же числовыми величинами, как и для формул (3) и (4), получают также R6=Rn.

АНАЛИЗ ФОРМУЛ ПРОЧНОСТИ БЕТОНА

Я р-М

2,5 — 0,5/

АНАЛИЗ ФОРМУЛ ПРОЧНОСТИ БЕТОНА

ИЛИ

Во всех предыдущих рассуждениях было установлено, что при стандартном методе исследования для некоторых цементов активность определялась при В/Ц=0,24, а для других В/Ц—0,34, т. е. у различных цементов была установлена одна и та же ак­тивность при разном водоцементном отношении если количест­во песка остается постоянным.

При пользовании формулой (3) (а также и Н. М. Беляева) для случая цементов одинаковой активности, но разной N при заданной марке бетона. получается одинаковое Ц/В; значит для гравийного бетона решение приобретает следующий вид:

W/B=oj|;+c'5'

А для щебня:

ЩВ=—+0,5.

1 0,55 Дц т '

При пользовании (преобразованной) формулой (5)

------------ __________

Яб(^-о,5|+о,5;?ц

■будет разное, так как зависит от нормальной густоты цемента.

Насколько существенно отличаются между собой эти форму­лы, можно судить по следующему примеру.

Если Ящ = &ц=300 кг/см2, но для одного цемента /Vi=20%, для другого N=30%, то при стандартном определении актив­ности получается Rn = Rn == 300 кг! см2:

Wi=0,24; N=0,34.

Требуется, например, определить В/Ц для бетона марки

°00

200. Для гравийного бетона по формуле (3) Ц/В =■ " — +

/, о * оии

+ 0,5=1,83; и соответственно В/Ц = 0,546 для обоих цемен­тов. Определяя В/Ц = W по преобразованной формуле (5), получим:

^ = -___________ ^___________ = ^° = 0,34,

1 /1 884 ' '

200 ---------- —0,5 +0,5-300

W=___________ ^___________ = ^ = 0,47.

/1 638

200 [------------- 0,5 +0,5-300

msd.com.ua

Сравнительный анализ прочности бетона... - ООО "НПЦ "Стройдиагностика"

Я говорю своим ученикам: вы должны вкладывать в работу три вещи. Первая – это усердие, вторая – любовь, а третья – страдание. Гленн Мёркатт (р. 1936)     /      Никогда не отказывайтесь от работы, считая ее ниже своего достоинства. Джулия Морган (1872-1957)      /      Остерегайтесь чрезмерной самоуверенности, особенно в отношении строительных конструкций. Касс Гилберт (1859-1934)      /      Противоречия порождают жизненную силу. Кэндзо Танге (1913-2005)      /      Мы не выполняем работу. Я считаю, что, по сути, мы – первооткрыватели. Гленн Мёркатт (р. 1936)      /      Меньше значит больше. Людвиг Мис ван дер Роэ (1886-1969)      /      1) Сексуальная жизнь 2) Сон 3) Домашние животные 4) Садоводство 5) Личная гигиена 6) Защита от непогоды 7) Домашняя гигиена 8) Обслуживание автомобиля 9) Приготовление пищи 10) Отопление 11) Солнечное освещение 12) Работа: Все эти требования необходимо учитывать при строительстве дома. Ханнес Мейер (1889-1954)      /      Очень часто приходится пренебрегать мнением клиентов в их же интересах. Джон Йохансен (1916-2012)      /      Строительство – это не наука. Наука изучает отдельные явления, чтобы вывести общие законы. Инженерное проектирование использует эти законы, чтобы решать конкретные практические задачи. В этом оно ближе к искусству или ремесленничеству. Ове Аруп (1895-1988)      /      Я не бог, но я гарантирую. Иван Баяндин (р.1956).

Сравнительный анализ прочности бетона...

 

Сравнительный анализ прочности бетона, определенной методами разрушающего и неразрушающего контроля

При обследовании несущих строительных конструкций зданий и сооружений, в соответствии с источником [5], определяется прочность бетона на одноосное сжатие.

Известно, что в бетонных и железобетонных конструкциях прочность бетона определяют механическими методами неразрушающего контроля по ГОСТ 22690-88, и разрушающего контроля образцов, отобранных из конструкций по ГОСТ 28570-90 и контрольных образцов по ГОСТ 10180 90.

Для определения прочности бетона в конструкциях методами неразрушающего контроля, в соответствии с требованиями гл. 3 ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами неразрушающего контроля», предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы). При обследовании конструкций ГОСТ допускает применять градуировочную зависимость, установленную для бетона отличающегося от испытываемого с уточнением ее в соответствии с методикой, приведенной в приложении 9 источника [1].

При построении градуировочной зависимости проводят испытания предварительно изготовленных кубов бетона, обжатых в прессе, известными методами неразрушающего контроля (пластической деформации, ударного импульса, упругого отскока), образцов, отобранных из конструкции на участке, на котором предварительно проводятся вышеназванные испытания с последующим их разрушением.

Предприятия – изготовители современных приборов неразрушающего контроля в процессе их конструирования и апробирования формируют базовые градуировочные зависимости на основании результатов параллельных испытаний образцов – кубов, изготовленных из бетонов основного ряда классов с различными видами заполнителей, неразрушающими методами по ГОСТ 22690-88 и затем в прессе (разрушением) по ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам».

Приборы оснащаются базовыми градуировочными зависимостями и закладываются в электронную программу прибора, либо, если прибор механического действия, поставляются с градуировочными зависимостями в виде графиков, таблиц, формул.

Практика показывает, что значения прочности бетона, определенные приборами неразрушающего контроля, в ряде случаев, существенно отличаются от значений прочности бетона, определенных разрушающим контролем образцов, отобранных из обследуемой конструкции.

В статье дается сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Определены причины расхождений величин прочности бетона. Определен коэффициент Кс для корректировки базовых градуировочных зависимостей, в соответствии с методикой приложения 9 источника [1].

Исследовался тяжелый бетон сборных и монолитных железобетонных конструкций строительных объектов Перми и Пермского края.

При испытаниях бетона использованы следующие приборы неразрушающего контроля: гидропресс измерителя прочности бетона «Оникс – ОС» (предприятие – изготовитель - Научно-производственное предприятие «Интерприбор», г. Челябинск), реализующий метод отрыва со скалыванием – локального разрушения путем вырыва стандартного анкерного устройства №III или №II; склерометр «ОМШ-1 ВК 15.00.000 ПС» (предприятие – изготовитель - Научно-технический центр средств контроля качества «Контрос», г. Солнечногорск, Московской области, реализующий метод упругого отскока, измеритель прочности бетона ИПС-МГ4 (предприятие – изготовитель - Специальное конструкторское бюро «Стройприбор», г. Челябинск), реализующий метод ударного импульса.

Испытания образцов, отобранных из конструкций, разрушающим контролем, проведены следующими лабораториями:

1. Региональная испытательная лаборатория цементов Пермского Государственного технического университета (Кафедра строительных материалов и специальных технологий).

2. ООО «Испытательная лаборатория Оргтехстроя» (Аттестат аккредитации Ростехрегулирования № РОСС RU.0001.21 СЛ 55 от 04 марта 2009 г.).

3. Лаборатория ООО «Краснокамский завод ЖБИ», г. Краснокамск, Пермского края.

В нижеприведенных таблицах №№1 - 4 проведены сопоставления результатов, полученных при испытаниях бетона конструкций методами разрушающего и неразрушающего контроля, на конкретных объектах. Для подсчета погрешности между лабораторными испытаниями (прессом) и приборами неразрушающего контроля за основной (100%) принят метод лабораторных испытаний (пресс).

 

Таблица 1

Определение прочности бетона конструкций фундамента насосной станции промышленных стоков ЦБК «Кама» в г. Краснокамске Пермского края

№ участка

Метод упругого отскока, кГс/см2 /% относительно пресса

Метод ударного импульса,

кГс/см2/% относительно пресса

Лабораторные испытания в прессе, кГс/см2/100%

1

411,9/77

406,1/75

538.0/100

2

415,4/65

399,3/63

637,0/100

3

408,5/83

396,3/81

491,0/100

Среднее значение

411,93/70

397,11/68

588/100

Коэффициент уточнения градуировочной зависимости Кс

1,35

1,39

-

 

 

Таблица 2

Определение прочности бетона контрольных образцов (стандартных кубов), изготовленных на ООО «Краснокамский завод ЖБИ», г. Краснокамск Пермского края. (Испытания проведены лабораторией завода)

№ образца

Прочность бетона образца при испытаниях методом разрушения (пресс)(кГс/см2)(МПа) Прочность бетона образца при испытаниях методом неразрушающего контроля

Прочность бетона образца при испытаниях методом неразрушающего контроля(ОМШ – 1)(кГс/см2)(МПа)

Расхождение результатов единичных показаний прочности между прибором ОМШ – 1 и прессом (%)

Среднее значение прочности бетона в серии по испытаниям в прессе (кГс/см2) (МПа)

Среднее значение прочности бетона в серии по испытаниям прибором ОМШ – 1

(кГс/см2) (МПа)

Коэффициент уточнения градуировоч-ной зависимости Кс

1

440

171

61

553,3

178,3

3,10

2

567

166

71

3

545

173

68

4

502

176

65

5

573

171

70

6

605

184

69

7

625

184

71

8

591

201

66

9

532

179

66

 

Таблица 3

Определение прочности бетона диафрагм жесткости монолитного железобетонного здания жилого дома по ул. Вильямса, 37 «б» в Орджоникидзевском районе г. Перми

Этаж

Метод отрыва со скалыванием, МПа

Метод упругого отскока, МПа

Метод ударного импульса, МПа

Лабораторные испытания в прессе, МПа

Цокольный

27,3

25,8

26,7

26,3

1

28,5

30,5

28,8

28,2

2

28,1

25,5

26,1

26,0

3

30,8

30,0

29,5

30,8

Среднее значение

28,7

28,0

27,9

27,8

Коэффициент уточнения градуировочной зависимости Кс

___

1,03

1,03

___

 

Таблица 4

Определение прочности бетона конструкций монолитного железобетонного ростверка фундамента здания по ул. Крисанова, 12 «а» в Ленинском районе г. Перми

№ участка

Метод упругого отскока, кГс/см2 /% относительно пресса (при наличии поверхностного слоя бетона)

Метод упругого отскока, кГс/см2 /% относительно пресса (после удаления поверхностного слоя бетона)

Лабораторные испытания в прессе, образцов- цилиндров, отобранных из конструкции кГс/см2/100%

1

141,9/62

206,1/90

228.0/100

2

165,4/70

219,3/93

237,0/100

3

178,5/74

226,3/94

241,0/100

Среднее значение

161,9/69

217,2/92

235/100

Коэффициент уточнения градуировочной зависимости Кс

1,45

1,08

_____________

На основании анализа и синтеза результатов испытаний выявлены следующие причины расхождений величин прочности тяжелого бетона на одноосное сжатие методами разрушающего контроля в сравнении с неразрушающими методами контроля:

1. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и приборами неразрушающего контроля ОМШ – 1 (методом неразрушающего контроля – упругого отскока) и ИПС-МГ4 (методом неразрушающего контроля – ударного импульса) объясняется тем, что приборы неразрушающего контроля по условиям испытаний использовались для определения прочности поверхностного слоя. Поверхностный слой характеризуется по составу меньшим количеством крупного заполнителя и большим количеством цементного раствора. Вследствие этого поверхностный слой обладает меньшими прочностными характеристиками, чем основной массив, и класс бетона поверхностного слоя на одну – две ступени ниже класса бетона основного массива конструкции.

2. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и методом неразрушающего контроля – отрыва со скалыванием (прибор «ОНИКС – ОС» минимальна и находится в пределах допускаемой относительной погрешности прибора (2%). Тем самым полученные данные подтверждают возможность использования метода неразрушающего контроля – отрыва со скалыванием, без установления индивидуальных градуировочных зависимостей при использовании стандартного анкерного устройства, что согласуется с требованиями п.3.14 источника [1]. Анализ данных результатов предполагает также, что на глубине 30 – 40 мм от поверхности бетонных конструкций прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала при достаточном качестве основных циклов производства работ (укладки, уплотнения, прогрева при отрицательных температурах, выдерживания бетона).

Анализом результатов испытаний установлено:

1. независимо от способа исследования железобетонных конструкций, прочность бетона имеет тенденцию нарастания с поверхности в глубину массива, и на некоторой глубине от поверхности прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала. Следовательно, для достоверности получаемых значений прочности неразрушающими методами (пластической деформации, ударного импульса, упругого отскока) необходимо перед испытаниями снимать поверхностный слой бетона.

2. устойчивая закономерность: чем выше прогнозируемый (проектный) класс исследуемой конструкции, тем большая разница полученных величин прочности в сравнении разрушающего метода (пресс) с неразрушающими методами контроля. Выявленная закономерность предполагает следующее:

2.1. Для малых и средних классов бетона (В7,5 – В25) нарастание прочности с поверхности в глубинные слои плавное, то есть прочность поверхностных слоев соизмерима с прочностью основного массива;

2.2. Для высоких классов бетона (В25 – В40) нарастание прочности с поверхности в глубинные слои резкое, то есть прочность поверхностных слоев значительно ниже прочности основного массива;

2.3. Для малых и средних классов бетона (В7,5 – В25) корректно использование неразрушающих методов контроля с базовыми настройками приборов, полученными при сопоставительных испытаниях с разрушающим методом в процессе конструирования прибора на предприятии – изготовителе, согласующимися с требованиями источника [1];

2.4. Для высоких классов бетона (В25 – В40) использование неразрушающих методов контроля допустимо только в строгом соответствии табл. 1, п.3.14 и прил. 9 источника [1], то есть с корректировкой коэффициента Кс градуировочной зависимости для бетонов, отличающихся от испытываемых (по составу, возрасту, условиям твердения, влажности) в соответствии с предлагаемой методикой источника [1].

Список литературы

1. ГОСТ 22690 88. Бетоны. Определение прочности механическими методами неразрушающего контроля. М., 1989 г.-16 с.

2. ГОСТ 18105 86. Бетоны. Правила контроля прочности. М., 1987 г.- 15 с.

3. ГОСТ 28570 90. Бетоны. Методы определения прочности по образцам, отобранным из конструкций. М., 1991 г.- 15 с.

4. ГОСТ 10180 90. Бетоны. Методы определения прочности по контрольным образцам. М., 1991 г.- 27

5. Правила обследования несущих строительных конструкций зданий и сооружений. СП 13-102-2003/ Госкомитет РФ по строительству и жилищно-коммунальному комплексу (Госстрой России). М., 2004 г.-27 с.

 
Добавить комментарий

xn--80aaicuccnzegqmjfk.xn--p1ai

Коррозия железобетонных конструкций. Исследование химического состава высолов на бетоне. Исследование образцов затвердевшего бетона.

Прочность и долговечность бетона и железобетона зависит от многих факторов. Если при проектировании и получении бетона учтены все эти факторы, то изделие со временем только набирает прочность.

В данной статье рассматривается факт прямо противоположный: уже в ходе строительных работ на железобетонных плитах перекрытия между подвалом и первым этажом строящегося здания наблюдается появление высолов, продольных трещин, затем отшелушивается поверхностный слой бетона и куски бетона отпадают(отстреливают), открывая железную арматуру, частично покрытую ржавчиной, т. е. наблюдается разрушение плиты. Первый этап разрушения — появление высолов; обнаружено на 90 % плит перекрытия.

По внешним проявлениям было сделано предположение, что разрушение бетонной плиты, которое сопровождается коррозией арматуры, может быть вызвано хлоридной коррозией бетона ІІ вида. Если в бетон попадают хлориды, то усиливаются процессы растворения других составляющих. Гидроксид кальция выносится по капиллярным порам на поверхность бетона. На поверхности бетона образуется налет карбоната кальция. Щелочность поровой жидкости бетона падает, начинается коррозия железной арматуры. Присутствующие хлориды ускоряют этот процесс. Для установления присутствия хлоридов в бетоне была выявлена их концентрация в высолах и водной вытяжке трех образцов бетона.

Другой причиной появления высолов и трещин на бетоне может быть коррозия III вида, т. е. образование в бетоне кристаллогидратов, имеющих больший объем, чем исходные соединения. В бетоне создается напряжение, которое приводит к появлению трещин. Типичным примером коррозии III вида является сульфатная коррозия. Но не только сульфатная коррозия относится к III виду. Многие соли cпособны давать кристаллогидраты большего объема, чем исходные соединения. Для определения вероятности коррозии III вида были проанализированы высолы и водные вытяжки трех образцов бетона на присутствие сульфатов и карбонатов.

В литературе описаны подобные случаи раз рушения плит перекрытия строящихся зданий г. Москвы. Авторы считают, что разрушение можетбыть связано с загрязнением сырья при перевозке или с нарушением технологии получения бетона.

Это связано с тремя факторами: во-первых, бетон получали c использованием цемента или заполнителей, загрязненных инородными примесями. Например, чистые продукты перевозили в вагонах из-под удобрений, угля, извести, доломита и других веществ. Наличие мнородных веществ нарушает процесс структурообразования. Размер «отстрелянных», вырванных кусков бетона в описанных случаях, так же как и в нашем, составлял от 10 до 500 мм, число «отстрелов» достигало 50–60 единиц на площадь перекрытия. От количества и характера попавших примесей, по мнению авторов, зависит длительность процесса. Он может продолжаться от месяца до нескольких лет.

Во-вторых, бетон получали с использованием заполнителей, содержащих активный кремнезем. Щелочи реагируют на SiO2, и это приводит к образованию вначале мелких трещин, потом более крупных, а затем сколов.

В-третьих, бетон — это неоднородное гетерогенное тело. Наличие пор и трещин в бетоне — неотъемлемая особенность строения материала. Формулы для расчета прочности бетона учитывают неоднородность и дефекты структуры материала. Заданная прочность достигается только при определенном соотношении однородности и неоднородности. Авторы считают, если смешивать цементы разных производителей, разных марок, то неоднородность и дефектность структуры достигают критического уровня. Например, нельзя смешивать цементы марки ПЦ400-Д0, ПЦ400-Д20, ПЦ400-Д5. Схватывание различных цементов проходит с разной скоростью, темп набора прочности различается, поэтому структура бетона будет иметь дефекты. Это приведет к высолам и «отстрелам». То же самое наблюдается, если использовать смесь цемента ПЦ400-Д0 разных производителей.

Кроме перечисленных факторов на появление микротрещин оказывают влияние объемные деформации, различие температурных и влажностных деформаций отдельных компонентов, температурные и влажностные градиенты, коррозионные воздействия среды эксплуатации и т. п. Процесс разрушения бетона можно рассматривать как развитие трещин, возникающих обычно по месту контакта цементного камня и заполнителя. Авторы отмечают, что развитие микротрещин в бетоне со временем прекращается (эффект «самозалечивания»). В рассматриваемом случае процессы образования и развития трещин почти прекратились примерно через полгода.

В ходе настоящего исследования был определен химический состав высолов и сделан анализ водных вытяжек трех образцов бетона.

Методика и результаты исследования

Исследование химического состава высолов на бетоне

Высолы для анализа взяты в двух удаленных друг от друга точках на разных плитах перекрытия (образец № 1 — сухие высолы, образец № 2 — мокрые высолы). Были исследованы водные вытяжки высолов и определено содержание в фильтрате хлоридов, сульфатов, карбонатов, гидрокарбонатов, кальция, магния.

Таблица №1: Результаты анализа водной вытяжки высолов.

Результаты анализа водной вытяжки высолов.

 

 

 

 

 

 

 

 

 

Расчеты показали, что растворимая в воде часть высола в обоих образцах представлена в основном гидрокарбонатами кальция и магния и гидроксидом кальция.

Затем исследовали солянокислую вытяжку высолов. Для этого часть высола, нерастворимого в воде, растворяли в НCl; наблюдалось активное выделение углекислого газа.

Часть высолов ни в воде, ни в HCl не растворяется. Разница нерастворившейся части для образцов связана с различными условиями отбора проб. В первом случае сухие высолы снимали скальпелем с бетона, была вероятность попадания в образец песка из бетона, который в НCl не растворяется. В соляно-кислой вытяжке определяли сульфаты, силикаты, полуторные окислы, кальций, магний.

Таблица №2: Результаты анализа солянокислой вытяжки высолов.

Результаты анализа солянокислой вытяжки высолов.

 

 

 

 

 

 

 

 

 

 

 

Таблица №3: Результаты анализа п.п.п. и водной вытяжки трех образцов бетона.

Результаты анализа п.п.п. и водной вытяжки трех образцов бетона.

 

 

 

 

 

 

 

 

 

Таким образом, если не учитывать песок, попавший в образцы при отборе проб, то 98,19 и 99,07 % высолов образцов 1 и 2 растворимы только в НCl с выделением СО2 — это карбонат кальция. Для проверки выводов, сделанных о составе высола, определяли потери при прокаливании образца № 2 при 950 °С.

Показатель п.п.п. равен 46,2 %. Расчет показывает, что химически чистый гидроксид кальция должен давать п.п.п. 24 %, карбонат кальция — 44 %, а гидрокарбонат кальция — 65,4 %. Таким образом, полученный результат свидетельствует о том, что высол представлен карбонатом кальция с незначительной примесью гидрокарбоната (растворимая часть 1,48 и 0,83 %), хлориды и сульфаты в составе высола отсутствуют.

Исследование образцов затвердевшего бетона.

Определены потери при прокаливании и получены водные вытяжки трех образцов бетона:

проба № 1 — новая партия плит перекрытия, без повреждений;

проба № 2 — куски бетона, отвалившиеся от дефектных плит перекрытия;

проба № 3 — отшелушившийся верхний слой бетона дефектных плит перекрытия.

Образцы бетона были предварительно разрушены, отобрана через сито мелкая цементно-песчаная фракция. Определены п.п.п. по общепринятой методике при 950 °С.

Для получения водной вытяжки образцы были залиты водой и периодически перемешивались в течение суток. Взвесь отфильтровали. Анализ водной вытяжки приведен в таблице №3.

Следует отметить, что чем больше разрушение бетона, тем ниже рН среды, меньше щелочность.

Снижение рН среды приводит к образованию ржавчины на арматуре, что и наблюдается в действительности. Увеличение показателя «потери при прокаливании» можно объяснить карбонизацией гидроксида кальция: чем больше гидроксида кальция в бетоне, тем меньше п.п.п. В разрушенных образцах гидроксид кальция карбонизован. Хлориды в водных вытяжках всех образцов отсутствуют, сульфаты присутствуют в незначительном количестве.

Выводы

Высолы на бетонных плитах перекрытия почти на 99 % состоят из карбоната кальция, что установлено двумя независимыми методами анализа.

Хлориды отсутствуют как в составе высолов, так и в водной вытяжке бетона, что свидетельствует о том, что разрушение бетона не связано с хлоридной коррозией.

Сульфаты отсутствуют в высолах, а в водной вытяжке образцов бетона присутствуютв количестве 0,2–0,35 % от массы взятого цементно-песчаного раствора. Такое количество сульфатов не может вызвать сульфатную коррозию.

Повышение потерь при прокаливании в разрушающемся бетоне по сравнению с обычным образцом и понижение рН водной вытяжки бетона и его щелочности свидетельствуют о карбонизации гидроксида кальция. О снижении концентрации гидроксида кальция в бетоне свидетельствует так-же появление ржавчины на арматуре.

Карбонизация гидроксида кальция в разрушающемся бетоне, образование высолов на поверхности плит, появление трещин на бетоне и сколов — последствия дефектов структуры бетона.

Причиной нарушения структуры бетона может быть как нарушение технологии получения железобетонных плит, так и температурно-влажностные условия эксплуатации.

Учитывая, что разрушению подвергались только плиты перекрытия между подвалом и первым этажом здания, необходимо обратить внимание на следующую причину образования микротрещин — температурные и влажностные градиенты. Температура в подвальном помещении летом на несколько градусов ниже, а влажность воздуха выше, чем на открытом пространстве. При относительной влажности воздуха 70 % и выше резко повышается агрессивность внешней среды, наблюдается увеличение скорости гидратации C3S и продвижение образующегося гидроксида кальция к поверхности. Высолы наблюдались на плитах только со стороны подвала, что подтверждает возможность описанного процесса.

Если уменьшается концентрация гидроксида кальция в бетоне, то снижается прочность цементного камня и бетона. Присутствие гидроксида кальция положительно влияет на прочностные свойства бетона, а также является регулятором стабильности других продуктов гидратации. Например, 3CaO · SiO2 · nh3O устойчив в водном растворе, содержащем не менее 1,1 г CaO/л. При потере 10 % CaO снижение прочности цементного камня достигает 10 %, при 20 %-ной потере CaO прочность уменьшается на 25 %, а при потере 33 % CaO наступает разрушение цементного камня. Поэтому выход на поверхность гидроксида кальция на значительной части плит может способствовать потере прочности, появлению трещин и сколов.

В будущем следует осуществлять проветривание подвальных помещений, чтобы избежать значительного повышения влажности воздуха в подвале. 

 

 

 

www.voscem.ru


Смотрите также