Секрет долговечности римского бетона. Бетон рим


Бетон в древнем риме

Римский бетон

Человечество строило давно. И из кирпича и из камня и из дерева. При этом в случае с каменной и кирпичной кладкой, ее нужно было чем-то скреплять и раствор был придуман очень давно. Однако, в Древнем Риме идею раствора развили, когда камни с кирпичами и не нужны — достаточно раствора с наполнителем.

Однако и раствор нужен не обычный, и наполнитель, и хотя оно и называется «бетоном», на современный бетон он похож крайне мало…

Надо сказать, что совсем неудивительно, что бетон начали массово применять в Древнем Риме:

1. Большой объем строительства. Любая империя начинает много строить. Тут много причин — от простой нужды в жилье или в мостах во время урбанизации, до вопросов престижа. Император Август говорил, что «он получил Рим кирпичным, а оставляет мраморным». Строительство в Риме ограничивалось не отсутствием финансирования или рабочей силы, а техническими возможностями строительной техники.

2. Строить требовалось быстро. Дело в том, что срок полномочий консулов, цензоров или переторов составлял от двух до пяти лет — и после этого времени они должны были отчитываться перед сенатом и народным собранием за сдачу объекта. Поэтому строительство старались укладывать в полтора-два года.

3. Римская бюрократия. Каждая империя очень быстро обрастает бюрократией. И строительство не могло не обрасти различными строительными нормами. Такие события, как завалившийся в 57 г в Фиденах амфитеатр для гладиаторов (во время представления), очень способствует изучению прочности материалов, как бы нам не казалось, что в те времена все стролось на глазок.

4. Любая империя строится не на века — а навсегда. И вопросы долговечности были перевоочередными — по Витрувию, долговечность каменной кладки определена в 80 лет. Поэтому старались строить сразу качественно, чтобы потом каждый год не ремонтировать.

Понятно, что требования взаимоисключающие. Строить много и качественно — это задача во все времена. И строители обратились к «опус цементум», так чаще всего называли бетон.

Прообраз бетона существовал и до Рима. Зиккураты города Ур строились трамбовкой смеси глины, влажного грунта и камней между деревянными щитами опалубки. Такие простые методы позволяли стоять стенам годами и тысячелетиями. Бетон, где для связующего использовались известь или битум, замечен в Древнем Египте. В Древней Греции во дворцах Креза бетоном отделаны стены и изобретена бутовая кладка — когда бетон заливается между двумя рядами каменной стены. Великая Китайская стена построена, в основном из бетона — на одну часть известкового теста брали две части песка с гравием или строительным мусором, укладывали слоями в районе 12 см и трамбовали.

В древней Индии обнаружены бетонные «набивные полы».

Что же сделали Римляне? Они довели технологию. Они сделали бетон качественным и недорогим и научились выпускать его в больших количествах. Римляне строили бутовую кладку очень давно, но первые образцы (построенные до 3 века до н.э.) до нас не дошли, а последующие стоят как ни в чем не бывало.

На картинке — фрагмент Пантеона, который до сих пор является самым большим бетонным неармированным зданием.

Бетон, собствено, состоит из двух частей — это связующее и наполнитель. Каждый из них выверен сотнями лет. Количество опытов и экспериментов просто не поддается подсчету. В римском бетоне связующее — это известь. Для того, чтобы ее получить, нужно взять известняк и обжечь его в печи. Тут первая засада — обжечь нужно максимально эффективно, чтобы сберечь топливо и максимально качественно. Мы получим негашеную известь (оксид кальция), которую нужно погасить водой. Тут тоже хватает секретов и методов, потому что если останутся крупинки негашеной извести, то прочность бетона резко упадет. Далее — вопросы сушки и подготовки «пушонки», то есть порошка гашеной извести (гидроксида кальция).

Если развести пушонку водой еще раз и получить известковое тесто — оно на воздухе покрывается корочкой известняка и постепенно каменеет. Это — процесс карбонизации. Во время его свободная вода испаряется из известкового теста и параллельно образовывается кристаллический каркас из гидроксида кальция.

И ему мешает эта самая корочка углекислого кальция, которая затрудняет попадание углекислого газа во внутренние слои гидроксида кальция. Процесс идет очень медленно — годами, десятилетиями и столетиями. Этому мешает та самая корочка. Она не пускает углекислый газ внутрь и отвердение идет за счет чистой кристаллизации. Процесс должен идти при положительной температуре и в сухости.

Тут необходим песок — растущие кристаллы гидроксида кальция срастаются между собой, образуя каркас вокруг частиц песка. Соответственно, нужно правильно рассчитать процент содержания песка, чтобы процесс шел максимально быстро и результат получился максимально прочным.

Естественно, начинаются вопросы подбора песка. Римляне перепробовали все типы песка, доступные им и тот же Витрувий пишет конкретные рекомендации. И тут есть секрет — если гидроксид кальция перевести в гидросиликат кальция, то он станет куда более стойким, потому что гидросиликат кальция не растворяется в воде. Для этого нужно добавить активный кремнезем, сейчас он называется гидравлической добавкой. Такое название говорит о том, что раствор будет застывать и в воде. И застывать будет очень и очень быстро!

Самая простая добавка — кирпичный или черепичный песок. Но у римлян были естественные добавки вулканического происхождения, естественно, их нужно было подбирать годами и десятилетиями, но и обойдутся они заметно дешевле.

Витрувий описывает эти добавки так «существует определенный порошок естественного происхождения, используя который можно добиться великолепного результата. Его находят в Байях и в землях вокруг Везувия. Это вещество при смешивании с известью и камнем не только придает прочность сооружению, но даже при устройстве дамб в открытом море прочно схватывается под водой». Такие добавки получили название «пуццолана», но их месторождение не только возле древних Путеол (сейчас Поццуоли), это также санторинская земля с острова Тир, рейнский трасс из Германии и туфф, который можно найти почти по всей Италии.

Хитростей при использовании добавок у римлян накопилось немало — например, использование морской воды при разведении раствора. Чаще всего на 1 часть извести давали 2 части пуццоланы.

Сейчас исследуют тот римский бетон, пролежавший в море тысячи лет и он по некоторым параметрам даже лучше современного.

Если попаданец хочет ввести бетон в древности, то ему следует задуматься над двумя вопросами:

1. Количество знаний, которые должен иметь попаданец, экстремально велико. Кроме вопросов, связанных с перечисленным, возникают вопросы с постройкой оборудования и инструментов. Ведь и печи нужно построить и инструменты для размельчения-перемешивания тоже нужны. Да и знания техники безопасности — ведь придется связываться с негашеной известью. И это — ни одного слова о строительстве или инструментах для строительства! Вы понимаете, почему много позже масоны образовались именно из строителей? Это была элита рабочих профессий, с ними могли соревноваться только ювелиры, но последний было очень мало, по сравнению с каменщиками. В средние века строитель-гастарбайтер был просто невозможен!

2. Введение бетона — занятие социальное. Цена бетона упадет только с массовым его производством. То есть должны быть задействована большая масса народа десятков разных специальностей и главное — развито управление этим всем. То есть — нужно кормить большой бюрократический аппарат. Естественно, такая надстройка окупается только когда начинаются крупные проекты. И это — не игрушечные средневековые соборы, а тысячекилометровые дороги, бетонные гавани с волноломами или акведуки. Получается как с запуском ракеты-носителя в космос — при увеличении массы груза немного растет размер третьей ступени, заметно размер второй и очень сильно — размер первой ступени. Соответственно — после развала Империи такие задачи потеряли актуальность. И бетон — вместе с ними.

www.popadancev.net

Производство бетонных работ в древнем Риме.

Книга «Римский бетон». Глава Ⅱ. Опус цементум - римский бетон.

В стремленье ввысь, величественно смелом.Вершилось здание свободным острием,И было конченным, и было целым.

Спокойно замкнутым в себе самом.

В. Брюсов Рис. 14. Виды каменной опалубки-облицовки.а) неправильная;б) правильная;в) из кирпича;

г) смешанная.

Мы подошли к одному из самых главных технологических процессов при производстве бетонных изделий — формованию, которое в современном понимании этого слова включает устройство опалубки, укладку и уплотнение бетонной смеси. Вопросы формования бетона, несомненно, крайне интересовали античных строителей.

Как уже было сказано, для возведения бетонных стен они обычно применяли каменную опалубку, которая, по мнению большинства ученых, одновременно выполняла роль облицовки. Такое мнение является распространенным, но не единственным, так как некоторые исследователи полагают, что каменная стена, выполняющая роль облицовки, возводилась лишь после твердения бетонного ядра.

Римляне употребляли самые различные виды каменной опалубки-облицовки: неправильную (инцерт), правильную из камней (ретикулат), правильную из кирпича (тестациум) и смешанную (микстум), т. е. с использованием камней и кирпичей (рис. 14).

В качестве материала для опалубки использовались или довольно крупные бутовые камни естественной формы с «инцертом» На фасаде (рис. 15), или камни, образующие правильный рисунок — «ретикулат». В этом случае опалубка представляла собой кладку из квадратных тесаных камней относительно небольшой величины, укладываемых так, что их стороны образовывали к горизонту угол в 45°. Полученный таким образом сетчатый рисунок придавал стене красивый вид.

Рис. 15. Разновидность «инцерта» - смешанная кладка. (opus mixtum - «микстум»)

В качестве примера можно привести волнолом в Неаполе (см. рис. 6), развалины виллы Адриана, остатки терм Диоклетиана в Риме и многие другие сооружения. Использовалась также опалубка из больших квадратных или прямоугольных камней, расположенных своими сторонами под прямым углом к горизонту (рис. 16). Разновидностью «ретикулата» был «опус спикатум» (spicatum), т. е. укладка камней или кирпичей в виде колоса или елочки или с частичным употреблением «ретикулата» и кирпичей (рис. 17).

В I в. н. э. на смену «ретикулату» приходит облицовка из обожженного плоского кирпича треугольной или любой другой формы. Стена с такой облицовкой выглядела более просто, чем «ретикулат», однако сцепление кирпичей с бетонной смесью было более надежным, а все сооружение более монолитным. Острые концы таких кирпичей были направлены в сторону бетонного ядра для лучшего закрепления в нем (рис. 18). Такие виды опалубок-облицовок, называемые «опус тестациум» (opus testacium), стали особенно популярны после Тиберия (14—37 гг.). когда «опус тестациум» изготавливались централизованно и регулярно обеспечивали стройку. Иногда ряды таких кирпичей чередовали с рядами тесаного камня, уложенного по форме «ретикулата».

Рис. 16. Опалубка из прямоугольных камнейс уложенными в нее слоями бетона (по Шуази)

По мере перехода от одного вида опалубки-облицовки к другому менялся не только внешний вид, но и качество сооружений. При этом не всегда в лучшую сторону. Так, после того как на смену «инцерту» пришел «ретикулат», сцепление камней с бетонов ухудшилось. По словам Витрувия, такая сетчатая кладка, несмотря на более привлекательный вид, легче давала трещины ...из-за того, что неперерезанные постели и швы кладки расходятся во все стороны. А при кладке неправильной формы камни, перекрывая друг друга и заходя один за другой, придают ей хотя и не очень приятный вид, но зато обеспечивают большую прочность, чем при сетчатой.

Рис. 17. Пример смешанной кладки«ретикулат» с кирпичом.

Для более прочного сцепления кирпича опалубки с бетоном римляне специально изготавливали кирпич с одной стороны шероховатым, пористым, а с другой — гладким и блестящим.

Во времена Тиберия в качестве внешней облицовки стали использовать также специально приготовленную черепицу, кромки и концы которой хорошо обеспечивали сцепление ее с бетоном. При этом черепица готовилась в специальных формах, после чего ее можно было с помощью удара молотка разбить на две или несколько одинаковых керамических деталей заданных размеров.

Рис. 18. Римская бетонная стена с опалубкой-облицовкойиз треугольного кирпича и поперечными связями из плоских

кирпичей и деревянных брусьев (по Шуази)

Всестороннее и длительное использование каменной и кирпично-черепичной кладки в качестве постоянной опалубки-облицовки, вероятно, было оправдано стремлением римлян придать привлекательность внешнему виду своих бетонных сооружений.

Помимо каменной опалубки широко применялась деревянная — в виде струганых досок и деревянных щитов, о чем упоминается в работах Витрувия и многих археологов.

Рис. 19. Опалубка с кирпичнымкаркасом в виде арок (по Шуази)

В особую группу входила опалубка сводов и куполов, так как её устройство считалось наиболее сложной работой в процессе строительства. Опалубка для сводов и куполов делалась деревянной и устраивалась по деревянным кружалам, которые в зави симости от пролета свода опирались или на опоры-выступы, специально оставляемые в стене в процессе строительства, или на деревянные леса. Она нередко имела сложную конфигурацию, в которой плотники должны были воплотить замысел архитектора. Конструкция такой опалубки зачастую усиливалась кирпичными каркасами (рис. 19), промежутки между которыми заполнялись бетонной смесью.

С целью экономии древесины римские инженеры использовали оригинальный способ изготовления массивных перекрытий: вначале с помощью легкой деревянной опалубки сооружался тонкий бетонный свод, а затем по нему производили последующее бетонирование всего перекрытия.

После возведения опалубки приступали к бетонированию сооружения. Это была относительно простая, но крайне тяжелая физическая операция, так как от того, как уложена и уплотнена бетонная смесь, зависят все основные свойства бетона.

Сегодня нам хорошо известно, что если бетонную смесь недоуплотнить всего лишь на 1%, то прочность его понизится на 5%. Если же недоуплотнение составит 5—10%, то прочность соответственно упадет на 30—50%. В современном строительстве такое положение считается недопустимым, поэтому уплотнению смеси уделяют серьезное внимание, применяя многочисленные виды бетоноформовочного оборудования, в основе которого в большинстве случаев лежит эффект вибрации.

Римляне не использовали вибрацию, но, видимо, хорошо понимали, насколько важно тщательно уложить и уплотнить бетонную смесь. В начальный период применения бетона они использовали хаотичную, беспорядочную укладку известкового раствора с большими камнями, что в наше время напоминает бутовую кладку с «изюмом», когда производится набрасывание больших бутовых камней в заранее уложенный раствор. Затем появляется более упорядоченный, послойный метод укладки растворной смеси и крупного заполнителя. Уплотнение бетонной смеси производилось ими с помощью трамбования или без него.

Трамбование осуществлялось следующим образом: вначале на небольшую высоту возводилась опалубка из крупных тесаных камней, назначение которых заключалось в том, чтобы за счет своей большой массы сдерживать боковое давление бетонной смеси и ударов трамбовок. Затем, видимо, в опалубку укладывался слой раствора толщиной 10 — 15 см, а поверх него набрасывался щебень крупностью 8—10 см (см. рис. 17). Возможно, щебень укладывался раньше раствора.

В качестве щебня использовались куски плотного туфа либо обломки черной лавы, добывавшиеся в карьерах, которые располагались неподалеку от строительной площадки. Когда слой щебня достигал приблизительно такой же толщины, как слой раствора, его начинали трамбовать тяжелыми деревянными трамбовками, обитыми железом. Трамбование продолжалось, видимо, до тех пор, пока сверху не появлялся раствор, заполнявший пустоты между щебнем. Затем снова укладывался раствор, посыпался щебнем, трамбовался, и процесс повторялся. Так вместе с ростом опалубки вырастала стена из монолитного бетона. При этом каждый законченный слой посыпался каменной крошкой и пылью, оставшейся после отески камней. Эта пыль, вероятно, предназначалась для того, чтобы бетонная смесь не прилипала к ногам и трамбовкам рабочих, хотя, по мнению архитектора А. Башкирова, пыль служила специальным «прокладочным», антисейсмическим слоем.

Источник книга «Римский бетон». Автор В.А.Кочетов

stroyremkom.ru

Пуццолана и римский бетон

Римская архитектура отличается грандиозностью, которая стала возможной благодаря стремительному развитию инженерного дела в то время. Римляне совершили прорыв в проектировании, что позволило им возвести протяженные акведуки, грандиозные храмы, амфитеатры и другие сооружения, которые мы можем увидеть и сейчас. Это произошло с помощью новых материалов, в частности, бетона, пуццоланы, а также новаторских конструкций – сводов и куполов.

Римляне многое переняли из греческой культуры, и архитектура не исключение. Они строили храмы, похожие на греческие, и окружали их рядами колонн согласно архитектурным ордерам. Новыми стали технологии проектирования и строительства, которые применяются в архитектуре до сих пор.

Римский бетон

Одна из таких идей – применение бетона. Обычно считается, что бетон – произведение 20 века, но его использовали и во времена Рима. Но бетон не римское изобретение - и древние греки, и народ Кампании (часть северной Италии, где в древности жили греки и этруски) использовали раствор при возведении каменных стен по крайней мере уже в 4 веке до нашей эры. А римлянам отлично удавалось улучшать готовые идеи, поэтому римский бетон не стал исключением.

Стремительно растущая империя, в которой постоянно что-то строилось, нуждалась в идеальном материале. Римляне покрывали стены из кирпичей или тесаного камня смесью бута с бетоном – получалось дешево, быстро и очень крепко. Римский бетон отлично подходил для изогнутых форм – особенно сводов и куполов, столь любимых римлянами. Быстросхватывающийся и водостойкий бетон, изобретенный в Риме, был идеальным для строительства мостовых опор.

Пуццолана

Бетон – это раствор, смешанный с мелкими камнями для получения прочной и твердой массы. Обычно он состоял из трех частей – заполнителя (песка и камней), цемента (вяжущего вещества) и воды. Римский секрет был в эффективном вяжущем веществе под названием «пуццолана» – смеси извести и вулканического пепла.

Пуццолану нашли на склонах холмов на берегу Неаполитанского залива, в районе, который называют Путеола или Пуццола. Римляне относились к пуццолане с благоговением, описание ее свойств есть в трудах Плиния (Естественная история XXXV, 166) и Витрувия, который в своем трактате по архитектуре перечисляет ключевые особенности вещества: «…она не только сообщает крепость зданиям вообще, но даже когда при помощи нее выкладывают дамбы в море, то и они приобретают прочность под водою». Витрувий был прав. Римский бетон настолько прочен, что, несмотря на потерю облицовки в результате человеческого или погодного фактора, множество возведенных тысячу лет назад остовов зданий стоят до сих пор.

«…они были в буквальном смысле помешаны на строительстве, оно стало любимой причудой богатых», - Дж. К. Стобарт, «Великолепие Рима» (J.C. Stobart, The Grandeur That Was Rome)

Покоренные реки

Римский бетон с использованием пуццоланы идеально подходил для строительства мостов, а возведение больших каменных мостов стало возможным только с быстросхватывающимся бетоном. Фактически, до римлян мосты представляли собой небольшие каменные переправы или недолговечные деревянные конструкции. Благодаря римскому бетону изменился фундаментальный подход к мостостроению.

Арки и купола

Бетон окончательно разделил римскую и греческую архитектуру. В частности, он отлично подходил для создания изогнутых структур. Используя бетон, римские строители смогли возвести множество купольных и сводчатых зданий (грандиозный Пантеон, огромные императорские термы, знаменитые римские базилики), а также все типы арочных конструкций.

Эти формы изобрели не в Риме – в греческой архитектуре тоже есть купола и своды, но римляне благодаря пуццолане применили их гораздо шире и смогли создать купола очень большого размера (например, на крыше Пантеона) и внушительные арочные конструкции. Одержимые строительством и исполненные решимости возвести как можно большие и впечатляющие сооружения, благодаря бетону римские архитекторы развили огромный потенциал сводов и куполов и выразили с их помощью грандиозные архитектурные идеи. Они полностью изменили мировую архитектуру.

Римские сводчатые здания

Строительство свода – непростая задача, особенно если доступны только камни и обычный раствор. Придется сделать опалубку из дерева, очень тщательно и точно обтесать каждый камень и начать укладывать камни с верха деревянной конструкции. Изобретение нового, очень прочного раствора позволило сделать конструкцию более легкой, и обходиться менее квалифицированной рабочей силой. Быстросхватывающийся римский бетон на основе пуццоланы облегчил центрирование и увеличил скорость возведения зданий.

Пантеон в риме

Пантеон – одно из величайших римских зданий, храм всех богов в центре Рима. Круглое здание с рядами квадратных углублений (кессонов) с внутренней стороны купола производит потрясающее впечатление. Его постройка стала возможной благодаря виртуозному применению римского бетона, из которого состоит купол. Строители использовали наполнитель разного состава: твердый травертин и туф для основания и подъема до первого карниза, легкий кирпич и туф для следующего уровня, затем только кирпич и, наконец, в верхней части купола совсем легкий материал – вулканическую пемзу. ■

Хронология
  • 15 г. до н.э. – построен акведук Пон-дю-Гар в Ницце
  • 75-80 гг. – Колизей в Риме, построен
  • 100-112 гг. – построен рынок Траяна в Риме
  • 118-128 гг. – завершено строительство Пантеона в Риме
  • 135 г. – храм Венеры и Ромы в Риме, построен
  • 212-216 гг. – термы Каракаллы в Риме, построены
  • 298-306 гг. – термы Диоклетиана в Риме, построены

tartle.net

Древнеримский бетон оказался лучше современного

Как ни смешно говорить это, но, кроме большей энергоэффективности и экологичности, римский предшественник современных бетонов отличается ещё и повышенной устойчивостью к воздействию воды.

Новое исследование обнаруженных в морской среде образцов древнеримского бетона, выполненное группой под руководством Пауло Монтейро (Paulo Monteiro) из Калифорнийского университета в Беркли (США), показало, что этот материал даже более устойчив к коррозии, чем считалось.

Почти всё, что мы знаем о римском бетоне от его современников, основано на работах Марка Витрувия Поллиона (имя и когномен — гипотетические). В описании известкового строительного раствора, выполнявшего у римлян роль цемента, он рекомендует смешивать известь с пуццоланом (вулканический пепел, пемза и туф естественного происхождения, в основном из-под Везувия) в соотношении 1 к 3 для наземных работ и 1 к 2 для подводных. К слову, вместо обычной воды для производства бетона тогда рекомендовалось использовать морскую. Тем не менее рецепт всё равно очень условен, потому что ни количество добавлявшейся воды, ни точное время рекомендуемого схватывания Витрувий не приводит.

Основу портландцемента сегодняшнего типа изготавливают, упрощённо говоря, нагревом смеси известняка и глин при температурах до 1 450 °С. Согласно анализу группы г-на Монтейро, римский цемент производился иначе. Он требовал меньше извести, и известняк нагревался всего до 900 °C или даже меньшей температуры. Тем не менее в том, что касается устойчивости к воздействию воды (а это главная причина разрушения бетонных конструкций современности), он был даже лучше нынешнего.

Почему бы не дать древнеримской технологии зелёный свет, тем более что пуццолан распространён по всему миру, включая регионы, в которых нет ни единого действующего вулкана? «В середине XX века бетонные структуры проектировались для эксплуатации на протяжении 50 лет, и во многих из них сейчас непонятно в чём душа держится, — откровенно замечает г-н Монтейро. — Сегодня мы проектируем здания со сроком эксплуатации 100–120 лет». Само собой, из-за этого нам действительно интересно знать, почему бетонные изделия, пролежавшие 2 тыс. лет под водой, не имеют ни малейших следов разрушения.

Учёные называют следующие важные отличия проанализированных образцов римского бетона от нынешнего материала.

Во-первых, сегодняшний портландцемент состоит из кальция, силикатов и гидратов, в то время как римский аналог включал меньше кремниевых соединений и больше алюминия.

Во-вторых, если портландцемент является попыткой скопировать природный тоберморит и дженнит, но на практике его структура не вполне соответствует идеалу, то римский цемент и бетон, для которого он служил связующим, как раз совпадают с тоберморитом. Почему? — В силу присутствия в римском варианте тоберморита алюминия, придающего ему бóльшую жёсткость.

Что может означать внедрение сходных технологий сегодня? В римском бетоне известняка всего 10% по весу, при этом он требует куда меньшего нагрева. Хотя полностью заменить нормальный портландцемент римским по ряду причин нельзя (к примеру, римский дольше схватывается, да и применять морскую воду не везде удобно), широкое использование последнего способно значительно снизить энергозатраты на изготовлении нынешних 19 млрд тонн бетона в год, служащего причиной 7% глобальных выбросов углекислого газа и потребителем значительной части доступной человечеству пресной воды.

Наконец, и это весьма важно, замедление темпов коррозии современного железобетона может резко уменьшить затраты на строительство новых зданий и сооружений и ремонт старых. Разумеется, чтобы римскую сказку сделать былью, выводы по структуре использовавшего древними бетона должны быть взяты на вооружение современными инженерами.

othereal.ru

vest-beton.ru

Бетон римский - это... Что такое Бетон римский?

Бетон Римский – одно из выдающихся достижений римского зодчества. Прочный и водонепроницаемый строительный материал. Вошел в строительную практику, по-видимому, с I в. н. э. Первоначально выкладывали кирпичную коробку – “опалубку”, заполняли пространство между стенками бетоном (щебень, известковый раствор и вулканический песок – ПУЦЦОЛАН). Через определенные промежутки настилали горизонтальный ряд кирпичей для большей ровности и прочности. Заливку повторяли. Когда бетон застывал, он образовывал вместе с кирпичной коробкой сплошной монолит, который со временем становился все более твердым. Применение этого материала открыло перед архитекторами возможность возведения большепролетных конструкций и сводчатых перекрытий. При сооружении свода или купола возводили каркас из кирпичных арок на растворе. Эти арки служили опорой, на которую горизонтальными слоями наливали бетон. Такая технология помимо своей простоты и экономичности обеспечивала сооружениям необычайную прочность и позволяла вести широкомасштабное строительство с небольшим числом строителей-профессионалов, руководящих массой неквалифицированных работников-рабов, пленников. Снаружи здания облицовывали каменными блоками или мраморными плитами, и создавалось впечатление что все сооружение целиком возведено из камня.

[Словарь терминов архитектуры. Юсупов Э. С., 1994]

Рубрика термина: Виды бетона

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Секрет римского бетона.

Сайт строителя

Книга «Римский бетон». Глава Ⅱ. Опус цементум - римский бетон.

Способы производства бетонных работ.

Бетон в деревянной опалубкеРис. 20. Бетон в деревянной опалубке (по Шуази)

Такой же способ укладки бетона применялся при строительстве подземных частей зданий, например, фундаментов, где опалубкой служили деревянные шиты, установленные по длине вырытой траншеи, раскрепленные изнутри поперечными и продольными брусьями (рис. 20). В случае постройки фундаментов на плотных грунтах вулканического происхождения, которыми так богата была римская земля, бетонная смесь укладывалась в траншею без опалубки, так как котлован или траншея сами по себе образовывали устойчивую форму, в которой было удобно укладывать и трамбовать бетон. Таковы подземные части цирка Салюстия, базилики Константина, зданий виллы Адриана и т. д.

Способ трамбования широко применялся при строительстве полов и дорог, на что в свое время указывали Варрон и Витрувий. При этом следует обратить особое внимание на то, что трамбование смеси, по словам Витрувия, обычно производилось «частыми Ударами тяжелых трамбовок (посредством) большой группой рабочих». Все это говорит о том, что древние строители (и не только в Древнем Риме) придавали большое значение тщательному уплотнению бетонной смеси. Даже наносимую на стены штукатурку рекомендовалось «бить гладилкой...» для придания ей большей плотности. Отсюда и качество штукатурки было такое, что «в нее можно было смотреться как в зеркало», а написанные на ней фрески можно было, но словам Плиния Старшего, вместе со штукатуркой переносить в любое место.

Польза продолжительного уплотнения смеси подтверждается и индийской практикой бетонного строительства. В Бенгалии. где песок или его часть в растворе заменялась тонкомплошм кирпичом (суркхи), применяли следующий способ производства работ: жирную известь и суркхи смешивали в мокром состоянии на бегунках до образования клейкой массы, которая добавлялась к заполнителю, после чего раствор тщательно перемешивался и укладывался. Трамбование продолжалось в течение многих часов " заканчивалось лишь тогда, когда вода, налитая на поверхность растворе переставала впитываться в него.

Интересным представляется также, что в отдельных случаях до начала укладки и уплотнения смеси ее предварительно подвергали усиленной механической обработке: ...рабочие группой в 10 человек толкли смесь деревянными бабами и только после такой обработки применяли в дело... Предварительная (до формования) активация бетонной смеси применяется и в наши дни. Так, сегодня известно несколько способов активации бетонной смеси, в том числе — механическая — виброактивация.

Другой способ производства бетонных работ выполнялся без применения трамбования и, вероятно, был распространен гораздо шире, чем первый. В качестве опалубки служили стены, выложенные из более мелких и легких, чем в первом случае, камней (кирпичей) кубической или треугольной формы. Толщина такой опалубки была намного меньше, чем в первом случае, так как давление, передаваемое бетонной смесью на стены, было значительно ниже.

В опалубку заливался небольшой слой раствора и на него сверху набрасывались камни, нередко достигавшие в поперечнике 12—17 см. При этом онч зачастую укладывались только на постель, т. е. горизонтально. Такой вид кладки в какой-то мере напоминал современную бутобетонную, хотя и отличался от нее строгим чередованием слоев раствора и крупного заполнителя. Консистенция растворной смеси выбиралась, видимо, таким образом, чтобы крупный заполнитель погрузился в смесь не больше, чем на определенную глубину, с тем, чтобы только заполнить пустоты между зернами щебня. Это подтверждается одинаковыми по высоте слоями щебня.

Для большей устойчивости обе стенки каменной опалубки по мере заполнения их бетонной смесью связывались специальными плоскими квадратными кирпичами из обожженной глины, размером 60 X 60 см и толщиной 4...5 см (см. рис. 19), которые укладывались обычно через 1,5...3 м по высоте стены, и поперечными деревянными брусьями.

Рассмотрев оба способа производства бетонных работ, следует еше раз подчеркнуть, что хотя они и были основными при изготовлении бетонных сооружений, но далеко не единственными. Различные их варианты использовались во всех концах Римской империи.

Древнеримский секрет долговечности бетонных сооружений.

Таким образом, после относительно подробного анализа технологии формования римского бетона мы вновь подошли к вопросу о тайне так называемого древнеримского секрета долговечности бетонных сооружений.

Одним из первых, кто сделал попытку объяснения древнеримского секрета долговечности бетонных сооружений, был французский архитектор Ж. Ронделе (1734—1829). После длительного изучения римских сооружений и проведения ряда опытов он пришел к выводу, что превосходное качество римских растворов и бетонов объясняется не какими-нибудь секретами гашения извести, ее составом или сроками выдерживания, как думали раньше, а лишь тщательным перемешиванием и хорошим уплотнением (трамбованием) свежеуложенной смеси. Действительно, опыты показали, что химический анализ римских растворов и бетонов не обнаруживает в их составе ничего необычного. При этом они характеризуются плотной структурой и часто содержат еще не полностью карбонизировавшуюся известь.

Современный английский исследователь Ф. Финкелдей после детального обследования отдельных частей римского бетонного акведука также пришел к выводу, что у римлян не было никаких особых секретов изготовления бетонных сооружений. По его мнению, долговечность достигалась применением известково-пуццоланового вяжущего и рационально подобранного соотношения вяжущего и заполнителя. При этом римляне использовали умеренное количество воды в бетонной смеси. Ф. Финкелдей был настолько поражен долговечностью и прочностью римских бетонных сооружений, что настойчиво призывал вернуться к их старым технологическим методам, используя аналогичный цемент и заполнители.

Можно ли согласиться с выводами Ж. Ронделе и Ф. Финкелдей, двух известных ученых-строителей, которых разделяет более чем столетний отрезок времени? Вероятно да, так как любой специалист-бетонщик, будь то античный строитель, энциклопедист типа Ж. Ронделе или исследователь наших дней, знает простые, но важные принципы получения бетона с заданными свойствами. Это тщательный выбор исходных материалов для бетона, перемешивание и усиленное уплотнение бетонной смеси.

Кроме того, для каждого типа конструкции римляне тщательно определяли вид бетона и неукоснительно соблюдали все технические условия. Как известно, они разработали значительное количество стандартов и строго им следовали. При их полувоенном государственном управлении и рабовладельческой системе хозяйства сомневаться в этом не приходится.

Источник книга «Римский бетон». Автор В.А.Кочетов

stroyremkom.ru

Рецепты Римского бетона

Для того чтобы бетон и бетонные сооружения обладали всеми требуемыми характеристиками, необходимо точно знать рецепт бетона — состав, т. е. соотношение всех его компонентов. В конечном виде состав бетона записывают в виде весового или реже объемного соотношения, например, 1:2:4 (цемент:песок:щебень или гравий), т. е. на одну часть цемента приходится две части песка и четыре части щебня или гравия. Определив заранее расход цемента и воды, можно, пользуясь указанным соотношением, легко вычислить расход каждого из заполнителей. Однако перед тем, как подойти к рецептам для бетона, необходимо выяснить еще один важный вопрос — роль заполнителей — песка и крупных камней в бетоне. Как они влияют на свойства бетона, да и нужны ли они вообще в бетоне? Сразу же необходимо сказать, что без заполнителей нельзя изготовить бетон. Присутствие их в бетоне, как было установлено, значительно улучшает строительно-технические свойства материала и, в первую очередь, такие, как водонепроницаемость, Деформативность и прочность. Кроме того, заполнители намного Дешевле вяжущих веществ, поэтому экономически более выгодно, чтобы в бетонной смеси их было как можно больше. Несомненно, что, начав работать с бетоном, римляне не могли Не обратить внимания на качество заполнителей. Так, для удобст-Ва их применения уже с середины I в. до н. э. вводится классификация заполнителей по виду породы, загрязненности, а также в зависимости от назначения будущего бетонного сооружения. Об этом свидетельствуют работы археологов и древних авторов, так, по виду и условиям залегания пески подразделялись, как и теперь, на речные, морские и горные (овражные), или как их называли прежде — котлованные. При этом существовало дополнительное разделение каждого вида песка по окраске и загрязненности. Витрувий в кн. II, гл. 4 писал о том, что «...Есть следующие сорта горного песка: черный, серый, красный и карбункул (песок вулканического происхождения). Из них наилучшим будет тот, который скрипит при растирании в руке». В большинстве случаев он советовал применять чистые «без примеси земли» пески. Так, для кладки стен и сводов Витрувий рекомендовал только мытый песок, а для штукатурных работ — очищенный речной. Морской песок, по его мнению, в большинстве случаев нежелателен, так как содержит примеси солей, которые ведут к выцветанию стен. При этом, как пишет Витрувий, наличие в песке соли, обладающей гигроскопическими свойствами, затрудняет высыхание раствора, задерживая тем самым сроки строительства. Такое утверждение не противоречит современным техническим условиям на мелкий заполнитель. Есть сведения, что заполнители для бетона (особенно пуццолановые) обязательно промывались. Интересны указания римлян по заготовке бутовых камней и щебня для бетона. «Надо добывать камень не зимою, а летом,— пишет Витрувий (кн. II. гл. 4),— и оставлять его вылеживаться на открытом воздухе два года до начала стройки. Тот камень, который за это двухлетие будет поврежден непогодой, пойдет на фундамент, остальной же, оказавшийся испорченным, пойдет для надземной части здания как испытанный природою и могущий сохранить свою прочность...» Методы определения чистоты заполнителей были весьма простыми, а требования к ним более жесткими. «...Если насыпать песок на белое полотенце и затем потрясти или подбросить его и он не оставит пятен и землистого осадка, то будет годен...» (Витрувий, кн. II, гл. 4). Особое значение для бетона имеет зерновой (гранулометрический) состав его заполнителей. Песок и щебень или гравий должны состоять из зерен различной величины, тогда объем пустот в них будет минимальным, а чем меньше объем пустот в заполнителе, тем меньше требуется вяжущего вещества для получения плотного бетона. О том, что римляне придавали большое значение зерновому составу заполнителей, говорят результаты испытания их сооружений, выполненных в наше время. Так при исследовании римских развалин в Англии было выявлено, что из 58 бетонных образцов стен 55 имели заполнитель с одинаковой наибольшей крупностью, проходивший сквозь сито с отверстием 12 мм. Из 209 образцов бутовой кладки 200 имели заполнитель.с наибольшей крупностью 19 мм и удовлетворительную по сегодняшним требованиям область зернового состава. Зерновой состав заполнителей из бетонов моста Траяна и водопровода близ Кельна также показал большую сходимость с современными требованиями. Есть и еще ряд подобных примеров. Следует также отметить частое использование дробленого щебня, причем «...не тяжелее фунта» (т. е. 327 г), как требует этого Витрувий. Вероятно, к началу 1 в. н. э. римскими строителями было установлено, что заполнитель оказывает вполне определенное влияние на свойства бетона. Этот вывод подтверждается многочисленными примерами. Так, при строительстве Колизея в бетоне был применен заполнитель трех видов: для фундаментов — плотный и тяжелый щебень из высокопрочной лавы, для стен — более легкий известняк, а в сводах и перекрытиях — легкая пемза и туф. Теперь вновь обратимся к составу бетона — его рецептуре. Вероятно, нет необходимости убеждать читателя в том, что из одних и тех же продуктов разные повара могут приготовить разные по вкусу блюда. Зависеть это будет, в первую очередь, от соотношения продуктов, которые будут закладываться в кастрюлю. Подобное происходит и с приготовлением бетона. Можно представить, какими искусными «кулинарами» должны были быть античные мастера-строители, если, не имея под рукой механизированного оборудования и даже элементарных весов они получали достаточно качественные по составу бетоны и растворы. О выборе состава раствора в зависимости от назначения и вида применяемого песка имеются определенные указания Витру-вия и других античных авторов. Относительно же состава бетона таких указаний ни у кого из них нет, за исключением туманных рекомендаций Плиния Старшего. Однако, если вспомнить, как готовился бетон в Древнем Риме, станет ясным, почему там не было специальных рекомендаций о его составе. Бетон в то время приготавливали в основном раздельным способом, т. е. отдельно в специальных емкостях замешивали известковый раствор и укладывали его слоями в опалубку, чередуя со слоями крупного заполнителя. Поэтому, если состав раствора был необходим в первую очередь для получения требуемой консистенции смеси и всегда указывался в правилах производства работ, то количество щебня или гальки, по-видимому, играло второстепенную роль, и поэтому не учитывалось. Правда, в отдельных видах гидротехнических работ количество щебня в общем объеме бетона все-таки задавалось. Так, Плиний приводит состав гидротехнического бетона из извести, пуццоланы и битого туфа в пропорции 1:2:1. Другой вид бетона без указания состава, Употреблявшийся для постройки цистерн состоял, по Витрувию, из чистого песка, щебня или булыжника весом не более одного Фунта и самой хорошей извести. Можно предположить, что в то время уже существовали элементарные методы расчета состава раствора, так как римлянам были хорошо известны способы определения объема различных геометрических фигур и они могли рассчитывать общее количество раствора и бетона на любой заданный объем. Вяжущее вещество и заполнители принимались в зависимости от назначения работ в соотношениях, указанных выше, а количество воды подбиралось «на глаз». При этом важно подчеркнуть, что римляне были хорошо осведомлены о том, что избыток воды в смеси всегда нежелателен, на что указывал, в частности, Плиний. Воду поэтому, скорее всего, заливали в смесь не всю сразу, а постепенно, доводя раствор до требуемой консистенции. С тех пор как в конце XVIII в. в Европе появились первые машины по испытанию материалов, стали испытывать и образцы римского раствора и бетона, отобранные из различных сооружений. Правда, было обнаружено, что данные имеют немалый разброс, который усугубляется различным сроком службы сооружений— в пределах 50—350 лет. Однако отдельные выводы по результатам испытаний сделать можно. Можно предположить, что активность древнеримских вяжущих в зависимости от их вида была в пределах 0,5—15 МПа: в частности, для воздушной извести 0,5—1 МПа; для гидравлической 1,5—2 МПа; для известково-цемяночного и известково-пуццоланового цемента 3— 10 МПа и вяжущего типа романцемента 5—15 МПа. Очевидно, что производимые в то время бетоны также обладали различной прочностью в зависимости от вида вяжущего, водо-вяжущего отношения, тонкости помола пуццолановых добавок и других трудно учитываемых факторов. В 80-х годах нашего века западногерманские ученые провели серию испытаний бетонных образцов, взятых в районе Кельна, Зальбурга и других городов Западной Германии — бывшей римской провинции. Бетонные образцы были отобраны из стен домов, сводов зданий, стен бассейнов и других сооружений. При этом было обнаружено, что прочность на сжатие бетонных образцов имела от 0,5 до 50 МПа в зависимости от вида сооружений, хотя преобладающей оказалась прочность порядка 7—12 МПа. Максимальное значение прочности — 50 МПа — обнаружено У бетонных полов. Стены и своды зданий показали гораздо меньшую прочность, а бетон из стен бассейна — всего 5 МПа. Это свидетельствует о том, что римляне, изготавливая водонепроницаемые сооружения, не стремились получить при этом прочный бетон. Основываясь на многочисленных описаниях римских сооружений и результатах испытаний, можно предположить, что римские бетоны в зависимости от вида применяемого вяжущего и заполнителя имели среднюю плотность от 700 до 2200 кг/м3, водо-поглощение 5—20% и пористость порядка 20—40%. Несмотря на такие большие диапазоны значений физико-механических показателей испытанных образцов, большинство римских бетонных сооружений оказались долговечными. Это подтверждает вывод отдельных исследователей о том, что ни прочность, ни пористость бетона не могут служить основным критерием при определении его долговечности. Вероятно, значения этих показателей наиболее важны в течение первых лет работы конструкции, а в дальнейшем они нивелируются. Сегодня трудно оценить и проанализировать составы римского бетона только по соотношению их компонентов при большом количестве неизвестных, тем более, что данные относительно действительного состава бетона и его структурных характеристик у многих исследователей вызывают сомнения. Можно лишь утверждать, что хорошее современное состояние отдельных бетонных сооружений Древнего Рима свидетельствует о превосходном качестве применяемого исходного материала, рационально подобранном составе бетона и надлежащем качестве строительных работ.

 

vogean.com

Римский Бетон:

Производим и продаем бетономешалки шнековые - растворосмесители для приготовления бетонного раствора для изготовления шлакоблоков, тротуарной плитки и других строительных изделий. Фото бетономешалки шнековой: Описание конструкции бетономешалки шнековой Бетономешалка состоит из: …

Итак, вы познакомились с римским бетоном, применявшимся античными строителями почти 2000 лет назад — этим древним строительным материалом, который, во многом преобразившись, смело шагнул в наш XX в. и прочно …

Римский народ сдержан теперь И о двух лишь вещах беспокойно Мечтает, Хлеба и зрелищ... Ювенал Римские зрелищные сооружения, включая театры, стадионы и ипподромы (гипподромы), ведут начало из Греции. Считается, что …

Из серых камней, выведенных строг Являли церкви мощь свободных сил В них дух столетий смело воплотил И веру в гений свой, и веру в бога. В. Брюсов После завоевания Карфагена …

В город прибудем, высокие стены его окружают; Гавань его с двух сторон огибает глубокая; Вход же в гавань стеснен кораблями, которыми справа и слева Берег уставлен, и каждый из них …

Хоть и малы эти бани, Но зданье их сладостно взору: Так же, как роза в садах, как и фиалок букет: Палатинская эпиграмма Основными потребителями вод в городах Древнего Рима бьщи …

Акведуки — главное свидетельство величия Римской Империи Фронтин Эти слова принадлежат Сексту Юлию Фронтину (кон. I — нач. II в. н. э.), крупному государственному деятелю Древнего Рима, который был дважды …

Дорог строитель чудотворный, Народ Траяна! Твой завет, Спокойный, строгий и упорный, В■ гранит и мрамор здесь одет. В. Брюсов Дороги прославили Древний Рим. Дороги — это торговые пути, пути сообщения, …

У римских строителей было крылатое выражение, приписыва­емое Витрувию: «utilitas, firmitas, venustas»— польза, проч­ность, красота! И, если судить по качеству возводимых ими со­оружений, их долговечности и архитектуре, то можно сказать, что …

В стремленье ввысь, величественно смелом, Вершилось здание свободным острием, 1 • И было конченным, и было целым, Спокойно замкнутым в себе самом. В. Брюсов Мы подошли к одному из самых …

Теперь реальным стало только Что можно было взвесить и измерить. Коснуться пястью, выразить числом. ■М. Волошин Когда инженеры-строители начинают профессиональный раз­говор о бетоне, то их в первую очередь интересует его …

В этом горниле вселенной, В этом смешеньи всех сил и веществ... В. Брюсов Попробуем проследить основной путь превращения белого чистого известняка в прочный и плотный камень с современных научных позиций. …

Этому искусству уже много тысяч лет... А. Куприн Долговечность римского бетона поразительна. Можно лишь Удивляться, глядя на отдельные древнеримские здания и соору­жения, простоявшие почти 2000 лет. Даже их развалины пора­жают …

И доныне неизменно Все хранит здесь явный след Прежней дерзости и мощи, Над которой смерти нет. В. Брюсов Римляне, как уже было сказано, не были изобретателями бетона, так же, как …

Откуда навык этот — неведомо... Г ораций Трудно точно сказать, где и когда появился бетон, так как начало его зарождения уходит далеко в глубь веков. Очевидно лишь то, что он …

В Древнем Риме не было слова «бетон». Оно появилось гораздо позже, в XVIII в. во Франции. Римляне же материал, подобный бетону, называли по-разному. Так, литую кладку с каменным заполнителем они …

Человек, просвещенный открытиями своих отцов Получил в наследие их мысли... Гельвеций Два великих древних государства — Эллада и Древний Рим находились совсем близко друг от друга, а в период римских …

Камни, полдень, пыль и молот Камни, пыль и зной... В. Брюсов Из чего же строили римляне свои великолепные здания и со­оружения? В первую очередь из того, что лежало у них …

Передавался труд к потомкам от отца, Но каждый камень, взвешен и размерен, Ложился в свой черед по замыслу творца. И линий общий строй был строг и верен. И каждый малый …

Дело то римским мужам привычно, Полезно для славы... Гораций По имеющимся на сегодня сведениям можно составить доста­точно определенно представление об организации труда рим­ских строителей. В Римском государстве была целая сеть …

Римлянин! Ты научись народами править державно. В этом искусство твое!— налагать условия мира, Милость покорным являть и смирять войною надменных. Вергилий Древний Рим. О нем написаны сотни статей и книг. …

Кочетов В. А. «Бетон — наилучший из материалов, изобретенных человече­ством»,— сказал знаменитый итальянский архитектор П. Л. Нер - ви. И он был прав. Оглянитесь вокруг, и вы увидите, что большин­ство …

msd.com.ua

Древнеримский бетон раскрывает свои секреты

Древнеримский бетон раскрывает свои секретыВ поисках технологии увеличения прочности и устойчивости бетона, международная группа геологов и инженеров обратилась к опыту Древнего Рима: построенные тогда бетонные сооружения пережили уже два тысячелетия. Ученые работали с помощью «Новейшего источника излучения»(Advanced Light Source, ALT) - cпециализированного источника синхротронного излучения третьего поколения, одного из самых ярких в мире источников ультрафиолетового и мягкого рентгеновского излучения; он находится в Национальной лаборатории имени Лоуренса в Беркли. На ALT они изучили мелкомасштабную структуру римского бетона. Впервые было описано, как сверхустойчивое соединение – кальциево-алюминиево-силикатный гидрат (C-A-S-H) – связывало один из самых прочных материалов в истории западной цивилизации.

Древнеримский бетон раскрывает свои секретыЭто открытие поможет увеличить срок эксплуатации современного бетона, который уже через 50 лет начинает рассыпаться, особенно в водной среде.

Кроме того, производство римского бетона будет более экологически чистым. Технологический процесс изготовления портландцемента (ключевого ингредиента бетона) требует много топлива для сжигания известняка и глин при температуре 1,450°С. Каждый год этот процесс дает 7% выбросов СО2 по всему миру. Производство же извести для римского бетона требует более низких температур (на 30% ниже).

«Римский бетон не рассыпался за 2000 лет, пребывая в агрессивной морской среде. Это один из самых износоустойчивых строительных материалов на планете – и это не случайно. Морская торговля обеспечивала политическую, экономическую и военную стабильность Римской империи. Поэтому строительство прочных гаваней было государственной задачей особой важности», - рассказывает Мари Джексон (Marie Jackson), автор исследования, инженер-исследователь в области строительной техники и экологических технологий (Калифорнийский университет в Беркли).

Исследовательскую группу возглавляли Джексон и Паулу Монтейру (Paulo Monteiro), профессор строительной техники и экологических технологий в Беркли. Они изучили образцы римского бетона, взятые из древнего волнолома на дне Поццуольского залива (к западу от Неаполя).

Бетон был излюбленным строительным материалом в Римской империи. Его использовали при строительстве таких памятников, как Пантеон, а также верфей, волноломов и других портовых сооружений. Особенно ученых заинтересовало, как подводные бетонные конструкции римлян выдерживали контакт с солёной водой.

Рецепт римского бетона был записан около 30 года до н.э. Витрувием. (Не такой уж) секретный ингредиент – это вулканический пепел, который римляне смешивали с известью для изготовления цементного строительного раствора. Этот раствор, вместе камнями (вулканический туф), римляне заливали в деревянные формы, уже погруженные в воду. Они решили не бороться с морской стихией, а приручить ее, сделав морскую воду составным элементом бетона.

Ученые описали крайне редкий минерал – тоберморит алюминия – один из гидросиликатов кальция (формула - Al Ca5Si6O16(OH)2•4h3O), который образуется при химической реакции цемента с водой. «Наше исследование впервые рассмотрело механические свойства этого минерала», - утверждает Джексон.

Древнеримский бетон раскрывает свои секреты

Но почему римский бетон перестали использовать в строительстве? «Римская империя вступила в период упадка, и морская торговля сократилась. Также возможно, что первоначальные сооружения оказались настолько хорошими, что заменять их не требовалось», - рассказывает Джексон.

При всей своей прочности римский бетон вряд ли заменит современный – ему нужно слишком много времени, чтобы затвердеть. Но в некоторых странах, где имеются большие запасы вулканического пепла, возрождение этой технологии может быть экономически оправданно – особенно там, где мало ресурсов золы-уноса (побочный продукт сжигания угля, который часто используется в производстве современного экологически чистого бетона).

«Сейчас на Земле золы-уноса не хватит, чтобы заменить даже половину используемого портландцемента. Наша идея заключается в том, чтобы найти местную альтернативу – что-то вроде древнеримского вулканического пепла. Переход на местные материалы поможет на 40% сократить производство портландцемента», - заявил Монейру.

Первоначальное финансирование проект получил от Научно-технологического университета имени короля Абдуллы (Саудовская Арабия). В этой ближневосточной стране – «просто горы вулканического пепла», годного для производства цемента, рассказал Монейру.

Помимо НТУКА, исследование спонсировали Фонд Лёбовской библиотеки классики, Гарвардский университет и научный отдел Министерства энергетики США. Образцы римского бетона были получены Мари Джексон в ходе проекта «Изучение римского морского бетона» (Roman Maritime Concrete Study, ROMACONS), под эгидой научно-исследовательского отдела итальянской компании Italcementi. Для анализа бетона ученые также воспользовались синхротроном третьего поколения BESSY (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlun), Берлин.

Данные исследования будут опубликованы в Journal of the American Ceramic Society и American Mineralogist.

На фото: срез образца римского бетона с морского дна и кристаллы Al-тоберморита под электронным микроскопом.

По материалам пресс-релиза Калифорнийского университета в Беркли.

Артём Космарский nauka21vek.ru

nauka21vek.ru

Римский бетон • ru.knowledgr.com

Римский бетон, также названный опусом caementicium, был материалом, используемым в строительстве во время последней римской республики через целую историю Римской империи. Римский бетон был основан на гидравлически устанавливающем цементе со многими существенными качествами, подобными современному портлендскому цементу. К середине 1-го века материал часто использовался в качестве бетона с кирпичным лицом, хотя изменения в совокупности позволили различные меры материалов. Далее инновационные события в материале, названном Конкретной Революцией, способствовали структурно сложным формам, таким как купол Пантеона. Римский бетон также использовался, чтобы сделать дороги.

Исторические ссылки

Vitruvius, сочиняя приблизительно 25 до н.э в его Десяти Книгах по Архитектуре, отличил типы совокупности, подходящей для подготовки известковых строительных растворов. Для структурных минометов он рекомендовал pozzolana, которые являются вулканическими песками с подобных песку кроватей Поццуоли «коричневато-желтый серый» в цвете под Неаполем и красновато-коричневый цвет в Риме. Vitruvius определяет, что отношение 1 лайма части к 3 частям pozzolana для цементирует используемый в зданиях и 1:2 отношение извести к pulvis Puteolanus для подводной работы, по существу то же самое отношение, смешанное сегодня для бетона, используемого в море.

К середине 1-го века принципы подводного строительства в бетоне были известны римским строителям. Город Цезарея был самым ранним известным примером, чтобы использовать подводную римскую конкретную технологию на таком крупном масштабе.

Восстанавливая Рим после того, как огонь в 64 н. э., которые разрушили значительные части города, новых строительных норм и правил Nero, состоял из бетона в основном с кирпичным лицом. Это, кажется, поощрило развитие кирпичных и конкретных отраслей промышленности.

В большей части использования сырую конкретную поверхность считали неприглядной, и своего рода столкновение было применено. Различные методы были характерны для различных периодов и включали:

  • Опус incertum: маленькие нерегулярные камни.
  • Опус reticulatum: маленькие брусковые блоки туфа положены в схеме размещения алмазов.
  • Опус quadratum: регулярно положенные курсы тесанных камней.
  • Опус latericium: регулярно положенные курсы кирпича.
  • Опус spicatum: кирпич положен в образце рисунка «елочкой».
  • Опус vittatum: квадратные блоки туфа, пересеченные кирпичными полосами на регулярных и нерегулярных расстояниях.
  • Опус africanum: вертикальные цепи вертикальных блоков с чередованием горизонтальных блоков.
  • Опус testaceum: толстая горизонтальная кирпичная работа.

Свойства материала

Римский бетон, как любой бетон, состоит из совокупного и гидравлического миномета – переплет, смешанный с водой, которая укрепляется в течение долгого времени. Совокупность изменилась и включала части скалы, керамической плитки и битого кирпича от остатков ранее уничтоженных зданий. Укрепление элементов, таких как стальной перебар, не использовалось.

Гипс и известь использовались в качестве переплетов. Вулканическая пыль, названная pozzolana или «песком ямы», была одобрена, где они могли быть получены. Pozzolana делает бетон более стойким, чтобы посолить воду, чем современный бетон. У pozzolanic используемого миномета было высокое содержание глинозема и кварца.

Бетон, и в частности гидравлический миномет, ответственный за его единство, был типом структурной керамики, полезность которой произошла в основном из его реологической пластичности в государстве пасты. Урегулирование и укрепление гидравлических цементируют полученный из гидратации материалов и последующего химического и физического взаимодействия этих продуктов гидратации. Это отличалось от урегулирования минометов гашеной извести, наиболее распространенное цементирует предримского мира. После того, как набор, римский бетон показал мало пластичности, хотя это сохранило некоторое сопротивление растяжимым усилиям.

Урегулирование pozzolanic цементирует, имеет много общего с урегулированием их современного коллеги, портлендского цемента. Высокий состав кварца римского pozzolana цементирует, очень близко к тому из современного цемента, к которому были добавлены шлак доменной печи, зольная пыль или дым кварца.

Сжимающие преимущества для современного Портленда цементируют, как правило, на уровне на 50 МПа и улучшились почти в десять раз с 1860. Нет никаких сопоставимых механических данных для древних минометов, хотя некоторая информация о пределе прочности может быть выведена из взламывания римских бетонных куполов. Эти пределы прочности варьируются существенно от отношения воды/цемента, используемого в начальном соединении. В настоящее время нет никакого способа установить, какие отношения воды/цемента римляне использовали, и при этом нет обширных данных для эффектов этого отношения на преимуществах pozzolanic, цементирует.

Сейсмическая технология

Для окружающей среды, столь же подверженной землетрясениям как итальянский полуостров, прерывания и внутреннее строительство в стенах и куполах создали неоднородности в конкретной массе. Части здания могли тогда перейти немного, когда было движение земли, чтобы приспособить такие усилия, увеличивая полную силу структуры. Это было в этом смысле, что кирпичи и бетон были гибки. Это, возможно, было именно по этой причине, что, хотя много зданий выдержали серьезное взламывание от множества причин, они продолжают стоять по сей день.

Другая технология, используемая, чтобы улучшить силу и стабильность бетона, была своей градацией в куполах. Один пример включал Пантеон, где совокупность верхней области купола состояла из переменных слоев легкого туфа и пемзы, давая бетону плотность 1 350 кг/м. Фонд структуры использовал travertine в качестве совокупности, имея намного более высокую плотность 2 200 кг/м.

См. также

  • Энергично измененный цемент (EMC)
  • Римский кирпич
  • Реакция Pozzolanic

Литература

  • Жан-Пьер Адам, Энтони Мэтьюс, римское здание, 1 994
  • Линн К. Ланкастер, конкретное сводчатое строительство в империале Рим, издательство Кембриджского университета, 2 005
  • Хизер Н. Lechtman & Linn W. Хоббс, “Римский Бетон и римская Архитектурная Революция”, Керамика и Том 3 Цивилизации: Керамика Высокой технологии: Мимо, Настоящее, будущее, отредактированное В.Д. Кинджери и изданное американским Обществом Керамики, 1 986
  • В. Л. Макдональд, Архитектура Римской империи, Издательства Йельского университета исправленного издания, Нью-Хейвен, 1 982

Внешние ссылки

  • Римский бетон
  • Опус caementicium римские стены
  • Смитсоновский институт: тайны зданий древнего Рима

ru.knowledgr.com


Смотрите также