Физико-химические процессы при тепловой обработке бетона. Экзотермия бетона


Экзотермия бетона - это... Что такое Экзотермия бетона?

Экзотермия бетона – повышение температуры бетона в изделии или конструкции в результате гидратации цемента.

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Экзотермия бетона (Heat evolution of concrete) – тепловыделение при твердении бетона вследствие гидратации цемента.

[Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.]

Рубрика термина: Общие термины, бетон

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Технология бетонных работ в зимних условиях

Физические процессы и определяющие положения

Понятие «зимние условия» в технологии монолитного бетона и железобетона несколько отличается от общепринятого - календарного. Зимние условия начинаются, когда среднесуточная температура наружного воздуха снижается до +5°С, а в течение суток имеет место падение температуры ниже 0°С.

При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. В результате этого прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются.

Замораживание свежеуложенного бетона сопровождается также образованием вокруг арматуры и зерен заполнителя ледяных пленок, которые благодаря притоку воды из менее охлажденных зон бетона увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя.

Все эти процессы значительно снижают прочность бетона и его сцепление с арматурой, а также уменьшает его плотность, стойкость и долговечность.

Если бетон до замерзания приобретает определенную начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической.

Величина нормируемой критической прочности зависит от класса бетона, вида и условий эксплуатации конструкции и составляет: для бетонных и железобетонных конструкций с ненапрягаемой арматурой - 50% проектной прочности для В7,5...В10, 40% для В12,5... В25 и 30% для В 30 и выше, для конструкций с предварительно напрягаемой арматурой - 80% проектной прочности, для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания веч-номерзлых грунтов - 70% проектной прочности, для конструкций, нагружаемых расчетной нагрузкой - 100% проектной прочности.

Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температурыувеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются и твердение бетона замедляется.

Поэтому при бетонировании в зимних условиях необходимо создать и поддерживать такие температурно-влажностные условия, при которых бетон твердеет до приобретения или критической, или заданной прочности в минимальные сроки с наименьшими трудовыми затратами. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.

При приготовлении бетонной смеси в зимних условиях ее температуру повышают до 35...40С путем подогрева заполнителей и воды. Заполнители подогревают до 60С паровыми регистрами, во вращающихся барабанах, в установках с продувкой дымовых газов через слой заполнителя, горячей водой. Воду подогревают в бойлерах или водогрейных котлах до 90С. Подогрев цемента запрещается.

При приготовлении подогретой бетонной смеси применяют иной порядок загрузки составляющих в бетоносмеситель. В летних условиях в барабан смесителя, предварительно заполненного водой, все сухие компоненты загружают одновременно. Зимой во избежание «заваривания» цемента в барабан смесителя вначале заливают воду и загружают крупный заполнитель, а затем после нескольких оборотов барабана - песок и цемент. Общую продолжительность перемешивания в зимних условиях увеличивают в 1,2... 1,5 раза. Бетонную смесь транспортируют в закрытой утепленной и прогретой перед началом работы таре (бадьи, кузова машин). Автомашиныимеют двойное днище, в полость которого поступают отработанные газы мотора, что предотвращает теплопотери. Бетонную смесь следует транспортировать от места приготовления до места укладки по возможности быстрее и без перегрузок. Места погрузки и выгрузки должны быть защищены от ветра, а средства подачи бетонной смеси в конструкции (хоботы, виброхоботы и др.) утеплены.

Состояние основания, на котором укладывают бетонную смесь, а также способ укладки должны исключать возможность ее замерзания в стыке с основанием и деформации основания при укладке бетона на пучинистые фунты. Для этого основание отогревают до положительных температур и предохраняют от замерзания до приобретения вновь уложенным бетоном требуемой прочности.

Опалубку и арматуру до бетонирования очищают от снега и наледи, арматуру диаметром более 25 мм, а также арматуру из жестких прокатных профилей и крупные металлические закладные детали при температуре ниже - 10°С отогревают до положительной температуры.

Бетонирование следует вести непрерывно и высокими темпами, при этом ранее уложенный слой бетона должен быть перекрыт до того, как в нем температура будет ниже предусмотренной.

Строительное производство располагает обширным арсеналом эффективных и экономичных методов выдерживания бетона в зимних условиях, позволяющих обеспечить высокое качество конструкций. Эти методы можно разделить на три группы: метод, предусматривающий использование начального теплосодержания, внесенного в бетонную смесь при ее приготовлении или перед укладкой в конструкцию, и тепловыделение цемента, сопровождающее твердение бетона - так называемый метод «термоса», методы, основанные на искусственном прогреве бетона, уложенного в конструкцию - электропрогрев, контактный, индукционный и инфракрасный нагрев, конвективный обогрев, методы, использующие эффект понижения эвтектической точки воды в бетоне с помощью специальных противоморозных химических добавок.

Указанные методы можно комбинировать. Выбор того или иного метода зависит от вида и массивности конструкции, вида, состава и требуемой прочности бетона, метеорологических условий производства работ, энергетической оснащенности строительной площадки и т. д.

Метод «термоса»

Технологическая сущность метода «термоса» заключается в том, что имеющая положительную температуру (обычно в пределах 15... 30°С) бетонная смесь укладывается в утепленную опалубку. В результате этого бетон конструкции набирает заданную прочность за счет начального теплосодержания и экзотермического тепловыделения цемента за время остывания до 0°С.

В процессе твердений бетона выделяется экзотермическая теплота, количественно зависящая от вида применяемого цемента и температуры выдерживания.

Наибольшим экзотермическим тепловыделением обладают высокомарочные и быстротвердеющие портландцементы. Экзотермия бетона обеспечивает существенный вклад в теплосодержание конструкции, выдерживаемой методом «термоса».

Поэтому при применении метода «термоса» рекомендуется применять бетонную смесь на высокоэкзотермичных портландских и быстротвердеющих цементах, укладывать с повышенной начальной температурой и тщательно утеплять.

Бетонирование методом «Термос с добавками-ускорителями»

Некоторые химические вещества (хлористый кальций СаСl, углекислый калий - поташ К2СО3, нитрат натрия NaNO3 и др.), введенные в бетон внезначительных количествах (до 2% от массы цемента), оказывают следу ющее действие на процесс твердения: эти добавки ускоряют процесс твердения в начальный период выдерживания бетона. Так, бетон с добавкой 2%-ного хлористого кальция от массы цемента уже на третий день достигает прочности, в 1,6 раза большей, чем бетон того же состава, но без добавки. Введение в бетон добавок-ускорителей, являющихся одновременно и противоморозными добавками, в указанных количествах понижает температуру замерзания до -3°С, увеличивая тем самым продолжительность остывания бетона, что также способствует приобретению бетоном большей прочности.

Бетоны с добавками-ускорителями готовят на подогретых заполнителях и горячей воде. При этом температура бетонной смеси на выходе из смесителя колеблется в пределах 25...35°С, снижаясь к моменту укладки до 20°С. Такие бетоны применяют при температуре наружного воздуха -15... -20°С. Укладывают их в утепленную опалубку и закрывают слоем теплоизоляции. Твердение бетона происходит в результате термосного выдерживания в сочетании с положительным воздействием химических добавок. Этот способ является простым и достаточно экономичным, позволяет применять метод «термоса» для конструкций с Мп

Бетонирование «Горячий термос»

Заключается в кратковременном разогреве бетонной смеси до температуры 60... 80°С, уплотнении ее в горячем состоянии и термосном выдерживании или с дополнительным обогревом.

В условиях строительной площадки разогрев бетонной смеси осуществляют, как правило, электрическим током. Для этого порцию бетонной смеси с помощью электродов включают в электрическую цепь переменного тока в качестве сопротивления.

Таким образом, как выделяемая мощность, так и количество выделяемой за промежуток времени теплоты зависят от подводимого к электродам напряжения (прямая пропорциональность) и омическогосопротивления профеваемой бетонной смеси (обратная пропорциональность).

В свою очередь, омическое сопротивление является функцией геометрических параметров плоских электродов, расстояния между электродами и удельного омического сопротивления бетонной смеси.

Электроразофев бетонной смеси осуществляют при напряжении тока 380 и реже 220 В. Для организации электроразофева на строительной площадке оборудуют пост с трансформатором (напряжение на низкой стороне 380 или 220 В), пультом управления и распределительным щитом.

Электроразогрев бетонной смеси осуществляют в основном в бадьях или в кузовах автосамосвалов.

В первом случае приготовленную смесь (на бетонном заводе), имеющую температуру 5...15°С, доставляют автосамосвалами на строительную площадку, выгружают в электробадьи, разогревают до 70... 80°С и укладывают в конструкцию. Чаще всего применяют обычные бадьи (туфельки) с тремя электродами из стали толщиной 5 мм, к которым с помощью кабельных разъемов подключают провода (или жилы кабелей) питающей сети. Для равномерного распределения бетонной смеси между электродами при загрузке бадьи и лучшей выгрузке разогретой смеси в конструкцию на корпусе бадьи установлен вибратор.

Во втором случае приготовленную на бетонном заводе смесь доставляют на строительную площадку в кузове автосамосвала. Автосамосвал въезжает на пост разогрева и останавливается под рамой с электродами. При работающем вибраторе электроды опускают в бетонную смесь и подают напряжение. Разогрев ведут в течение 10... 15 мин до температуры смеси на быстротвердеющих портландцементах 60°С, на портландцементах 70°С, на шлакопортландцементах 80°С.

Для разогрева смеси до столь высоких температур за короткий промежуток времени требуются большие электрические мощности. Так, для разогрева 1 м смеси до 60°С за 15 мин требуется 240 кВт, а за 10 мин - 360 кВт установленной мощности.

Искусственный прогрев и нагрев бетона

Сущность метода искусственного прогрева и нагрева заключается в повышении температуры уложенного бетона до максимально допустимой и поддержании ее в течение времени, за которое бетон набирает критическую или заданную прочность.

Искусственный прогрев и нагрев бетона применяют при бетонировании конструкций с Мп > 10, а также и более массивных, если в последних невозможно получить в установленные сроки заданную прочность при выдерживании только способом термоса.

Физическая сущность электропрогрева (электродного прогрева) идентична рассмотренному выше способу электроразогрева бетонной смеси, т. е. используется теплота, выделяемая в уложенном бетоне при пропуске через него электрического тока.

Образующаяся теплота расходуется на нагрев бетона и опалубки до заданной температуры и возмещение теплопотерь в окружающую среду, происходящих в процессе выдерживания. Температура бетона при электропрогреве определяется величиной вьщеляемой в бетоне электрической мощности, которая должна назначаться в зависимости от выбранного режима термообработки и величины теплопотерь, имеющих место при электропрогреве на морозе.

Для подведения электрической энергии к бетону используют различные электроды: пластинчатые, полосовые, стержневые и струнные.

К конструкциям электродов и схемам их размещения предъявляются следующие основные требования: мощность, выделяемая в бетоне при электропрогреве, должна соответствовать мощности, требуемой по тепловому расчету, электрическое и, следовательно, температурное поля должны быть по возможности равномерными, электроды следует располагать по возможности снаружи прогреваемой конструкции для обеспечения минимального расхода металла, установку электродов и присоединение к ним проводов необходимо производить до начала укладки бетонной смеси (при использовании наружных электродов).

В наибольшей степени удовлетворяют изложенным требованиям пластинчатые электроды.

Пластинчатые электроды принадлежат к разряду поверхностных и представляют собой пластины из кровельного железа или стали, нашиваемые на внутреннюю, примыкающую к бетону поверхность опалубки и подключаемые к разноименным фазам питающей сети. В результате токообмена между противолежащими электродами весь объем конструкции нагревается. С помощью пластичнатых электродов прогревают слабоармированные конструкции правильной формы небольших размеров (колонны, балки, стены и др.).

Полосовые электроды изготовляют из стальных полос шириной 20...50 мм и так же, как пластинчатые электроды, нашивают на внутреннюю поверхность опалубки.

Токообмен зависит от схемы присоединения полосовых электродов к фазам питающей сети. При присоединении противолежа щих электродов к разноименным фазам питающей сети токообмен происходит между противоположными гранями конструкции и в тепловыделение вовлекается вся масса бетона. При присоединении к разноименным фазам соседних электродов токообмен происходит между ними. При этом 90% всей подводимой энергии рассеивается в периферийных слоях толщиной, равной половине расстояния между электродами. В результате периферийные слои нагреваются за счет джоулевой теплоты. Центральные же слои (так называемое «ядро» бетона) твердеют за счет начального теплосодержания, экзотермии цемента и частично за счет притока теплоты от нагреваемых периферийных слоев. Первую схему применяют для прогрева слабоармированных конструкций толщиной не более 50 см. Периферийный электропрогрев применяют для конструкций любой массивности.

Полосовые электроды устанавливают по одну сторону конструк ции. При этом к разноименным фазам питающей сети присоединяют соседние электроды. В результате реализуется периферийный электропрогрев.

Одностороннее размещение полосовых электродов применяют при электропрогреве плит, стен, полов и других конструкций толщиной не более 20 см.

При сложной конфигурации бетонируемых конструкций при меняют стержневые электроды - арматурные прутки диаметром 6... 12 мм, устанавливаемые в тело бетона.

Наиболее целесообразно использовать стержневые электроды р виде плоских электродных групп. В этом случае обеспечивается более равномерное температурное поле в бетоне.

При электропрогреве бетонных элементов малого сечения и значительной протяженности (например, бетонных стыков шириной до 3... 4 см) применяют одиночные стержневые электроды.

При бетонировании горизонтально расположенных бетонных или имеющих большой защитный слой железобетонных конструкций используют плавающие электроды - арматурные стержни 6... 12 мм, втапливаемые в поверхность.

Струнные электроды применяют для прогрева конструкций, длина которых во много раз больше размеров их поперечного сечения (колонны, балки, прогоны и т. п.). Струнные электроды устанавливают по центру конструкции и подключают к одной фазе, а металлическую опалубку (или деревянную с обшивкой палубы кровельной сталью) - к другой. В отдельных случаях в качестве другого электрода может быть использована рабочая арматура.

Количество энергии, выделяемой в бетоне в единицу времени, а следовательно, и температурный режим электропрогрева зависят от вида и размеров электродов, схемы их размещения в конструкции, расстояний между ними и схемы подключения к питающей сети. При этом параметром, допускающим произвольное варьирование, чаще всего является подводимое напряжение. Выделяемая электрическая мощность в зависимости от перечисленных выше параметров рассчитывается по формулам.

Ток на электроды от источника питания подается через трансформаторы и распределительные устройства.

В качестве магистральных и коммутационных проводов применяют изолированные провода с медной или алюминиевой жилой, сечение которых подбирают из условия пропуска через них расчетной силы тока.

Перед включением напряжения проверяют правильность установки электродов, качество контактов на электродах и отсутствие их замыкания на арматуру.

Электропрогрев ведут на пониженных напряжениях в пределах 50... 127 В. Осредненно удельный расход электроэнергии составляет 60... 80 кВт/ч на 1 м3 железобетона.

Контактный (кондуктивный) нагрев. При данном методе используется теплота, выделяемая в проводнике при прохождении по нему электрического тока. Затем эта теплота передается контактным путем поверхностям конструкции. Передача теплоты в самом бетоне конструкции происходит путем теплопроводности. Для контактного нагрева бетона преимущественно применяют термоактивные (греющие) опалубки и термоактивные гибкие покрытия (ТАГП).

Греющая опалубка имеет палубу из металлического листа или водостойкой фанеры, с тыльной стороны которой расположены электрические нагревательные элементы. В современных опалубках в качестве нагревателей применяют греющие провода и кабели, сетчатые нагреватели, углеродные ленточные нагреватели, токопроводящие покрытия и др. Наиболее эффективно применение кабелей, которые состоят из константановой проволоки диаметром 0,7... 0,8 мм, помещенной в термостойкую изоляцию. Поверхность изоляции защищена от механических повреждений металлическим защитным чулком. Для обеспечения равномерного теплового потока кабель размещают на расстоянии 10... 15 см ветвь от ветви.

Сетчатые нагреватели (полоса сетки из металла) изолируют от палубы прокладкой асбестового листа, а с тыльной стороны опалубочного щита - также асбестовым листом и покрывают теплоизоляцией. Для создания электрической цепи отдельные полосы сетчатого нагревателя соединяют между собой разводящими шинами.

Углеродные ленточные нагреватели наклеивают специальными клеями на палубу щита. Для обеспечения прочного контакта с коммутирующими проводами концы лент подвергают меднению.

В греющую опалубку может быть переоборудована любая инвентарная с палубой из стали или фанеры. В зависимости от конкретных условий (темпа нагрева, температуры окружающей среды, мощности тепловой защиты тыльной части опалубки) потребная удельная мощность может колебаться от 0,5 до 2 кВ А/м2. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноличивании узлов сборных железобетонных элементов.

Термоактивное покрытие (ТРАП) - легкое, гибкое устройство с углеродными ленточными нагревателями или греющими проводами, обеспечивающие нагрев до 50°С. Основой покрытия является стеклохолст, к которому крепят нагреватели. Для теплоизоляции применяют штапельное стекловолокно с экранированием слоем из фольги. В качестве гидроизоляции используют прорезиненную ткань.

Гибкое покрытие можно изготовлять различного размера. Для крепления отдельных покрытий между собой предусмотрены отверстия для пропуска тесьмы или зажимов. Покрытие можно располагать на вертикальных, горизонтальных и наклонных поверхностях конструкций. По окончании работы с покрытием на одном месте его снимают, очищают и для удобства транспортировки сворачивают в рулон. Наиболее эффективно применять ТРАП при возведенииплит перекрытий и покрытий, устройстве подготовок под полы и др. ТРАП изготовляют с удельной электрической мощностью 0,25... 1 кВ-А/м2.

При инфакрасном нагреве используют способность инфракрасных лучей поглощаться телом и трансформироваться в тепловую энергию, что повышает теплосодержание этого тела.

Генерируют инфракрасное излучение путем нагрева твердых тел. В промышленности для этих целей применяют инфракрасные лучи с длиной волны 0,76... 6 мкм, при этом максимальным потоком волн данного спектра обладают тела с температурой излучающей поверхности 300...2200°С.

Теплота от источника инфракрасных лучей к нагреваемому телу передается мгновенно, без участия какого-либо переносчика теплоты. Поглощаясь поверхностями облучения, инфракрасные лучи превращаются в тепловую энергию. От нагретых таким образом поверхностных слоев тело прогревается за счет собственной теплопроводности.

Для бетонных работ в качестве генераторов инфракрасного излучения применяют трубчатые металлические и кварцевые излучатели. Для создания направленного лучистого потока излучатели заключают в плоские или параболические рефлекторы (обычно из алюминия).

Инфракрасный нагрев применяют при следующих технологических процессах: отогреве арматуры, промороженных оснований и бетонных поверхностей, тепловой защите укладываемого бетона, ускорении твердения бетона при устройстве междуэтажных перекрытий, возведении стен и других элементов в деревянной, металлической или конструктивной опалубке, высотных сооружений в скользящей опалубке (элеваторы, силосы и т. п.).

Электроэнергия для инфракрасных установок поступает обычно от трансформаторной подстанции, от которой к месту производства работ прокладывают низковольтный кабельный фидер, питающий распределительный шкаф. От последнего электроэнергию подают по кабельным линиям к отдельным инфракрасным установкам.Бетон обрабатывают инфракрасными лучами при наличии автоматических устройств, обеспечивающих заданные температурные и временные параметры путем периодического включения-выключения инфракрасных установок.

При индукционном нагреве бетона используют теплоту, выделяемую в арматуре или стальной опалубке, находящихся в электромагнитном поле катушки-индуктора, по которой протекает переменный электрический ток. Для этого по наружной поверхности опалубки последовательными витками укладывается изолированный провод-индуктор. Переменный электрический ток, проходя через индуктор, создает переменное электромагнитное поле. Электромагнитная индукция вызывает в находящемся в этом поле металле (арматуре, стальной опалубке) вихревые токи, в результате чего арматура (стальная опалубка) нагревается и от нее (кондуктивно) нагревается бетон.

Индукционный метод применяют для отогрева ранее выполненных и прогрева возводимых каркасных железобетонных конструкций, бетонируемых в любой опалубке и при любой температуре наружного воздуха.

stroyrubrika.ru

Специальные цементы" Часть 1

Посмотреть все статьи

9.1.2.3 Общие сведения о применении ПАВ в цементных системах.

Цементный строительный раствор в момент изготовления — это система, состоящая из различных компонентов, в том числе цемента, заполнителей и воды. Каждое твердое вещество в данном случае, независимо от его распределения в системе представляет собой отдельную фазу – совокупность отдельных частей системы, которые одинаковы по составу и по всем свойствам и отделены от остальных частей системы поверхностью раздела.

В нашем случае каждое зерно песка может быть отделено от аналогичных частичек прослойками воды или частицами цемента, но так как по составу и свойствам песчаные зерна практически не отличаются одно от другого, то их рассматривают как одну фазу. Равным образом и все частицы цемента, вводимого в состав строительного раствора, считаются другой твердой фазой.

Зерна цемента очень малы, их размерность лежит в пределах 1 – 100 микрон. Чем дисперснее вещество, тем больше его удельная поверхность. Удельная поверхность цементов, определяемая по методу воздухопроницаемости, составляет в среднем 3000 — 3500 см2/г. Этот метод вполне пригоден для практических нужд и им повсеместно пользуются. Однако он не является достаточно точным, так как не отражает истинной поверхности цементных зерен, обычно имеющих развитый микрорельеф, микротрещины и микрощели.

По этой причине реальная микрогеометрическая поверхность цементной частицы во много раз больше ее кажущейся геометрической поверхности. Значительно более достоверными являются показатели удельной поверхности, определяемые по адсорбции азота. Согласно этим методикам удельная поверхность современных цементов составляет в среднем около 20000 см2/г. Нетрудно подсчитать, что суммарная поверхность цементного порошка, идущего на изготовление 1 м3 бетона при расходе цемента 400 кг/м3, составляет 800000 м2. А если сюда добавить еще поверхность заполнителей (их удельная поверхность значительно меньше, чем цемента, но её все равно нужно учитывать), то окажется, что поверхность частиц твердых фаз в 1 м3 бетонной смеси приближается к 1 км2.

Предположим, что при изготовлении 1 м3 бетонной смеси вводят 180—190 л воды. Теоретически такое количество воды нужно распределить на указанной огромной поверхности твердых частиц и получить практически однородную смесь. Смешивание компонентов — одна из важных задач в технологии бетонов и строительных растворов. В частности, равномерное перемешивание способствует более полному и быстрому физико-химическому взаимодействию цементных частиц с водой. Вода, вводимая в бетонную смесь при ее изготовлении, должна, прежде всего, равномерно и притом тончайшим слоем смочить всю суммарную поверхность цементных частиц и заполнителей.

Но вода обладает значительным поверхностным натяжением, т. е. между молекулами воды, находящимися в ее поверхностном слое на границе раздела фаз, действуют значительные силы сцепления, препятствующие ее растеканию. Так как из всех геометрических тел шар обладает наименьшим отношением поверхности к объему, т. е. отличается наиболее “экономным” развитием поверхности, то именно благодаря поверхностному натяжению жидкость в свободном состоянии стремится не растекаться в тонкую пленку, а образовывать шарообразные капли. Это мы наблюдаем повседневно при медленном выливании жидкости из какого-либо сосуда, при попадании воды на горячую поверхность (образуются отдельные капли), при растекании ртути, при выпадении атмосферных осадков в виде дождя. Следовательно, большое поверхностное натяжение воды препятствует ее равномерному распределению на твердых частицах бетонной смеси.

Некоторые вещества, а именно поверхностно-активные (в дальнейшем ПАВ) способны существенно снижать поверхностное натяжение воды у данной поверхности раздела фаз, например на границах раздела фаз вода — твердое тело, вода — воздух. Всем известный с детства пример проявления действия этих веществ – мыльные пузыри. Можно раздуть мыльный пузырь диаметром даже более 20 см. Это удается сделать потому, что на обеих сторонах тончайшей водяной оболочки пузыря находятся молекулы ПАВ. В таком состоянии слой воды не стремится сжаться, а наоборот, легко поддается растяжению, становясь как бы подобным резине.

Таким образом, добавки ПАВ, снижая поверхностное натяжение воды, тем самым облегчают равномерность ее распределения тонким слоем на поверхности твердых тел.

 Добавки ПАВ существенным образом влияют на бетонные композиции как на стадии их приготовления, так и на стадии эксплуатации уже готовых бетонных изделий.

Улучшение смачиваемости цемента и заполнителей.

Добавки ПАВ улучшают растекание воды тонким слоем по поверхности твердых частиц, входящих в состав бетонной смеси. Но тончайшие слои воздуха, адсорбированного на зернах цемента, песка, щебня, в том числе и в их микротрещинах и микрощелях, или защемленного между зернами, в сою очередь препятствуют их смачиванию.

Известно, что ПАВ способны эмульгировать воздух в воде, и по этой причине добавки ПАВ в бетонную композицию также облегчают смачивание водой твердых наполнителей. А чем полнее произойдет смачивание компонентов бетона, тем большей будет однородность его свойств в различных участках тела бетона и тем выше окажется его качество.

Дефлокулирующее действие ПАВ на цемент.

При взаимодействии воды с цементом его зерна частично слипаются, не успев заметно прореагировать с водой. Следовательно, в получаемом цементном тесте содержится некоторое количество скоплений (флокул) цементных частиц. Такие флоккулы цемента при своем образовании захватывают воду, поэтому ее приходится вводить в большем количестве, чем это теоретически необходимо, с тем, чтобы повысить подвижность (пластичность) системы. В таких агрегатах-флокулах цемента не только вода, но и сам цемент не используется полностью. Мелкие комочки цемента, не прореагировавшего с водой, остаются как бы упакованными в затвердевшем бетоне. Добавки ПАВ являются дефлокулянтами цемента (способствуют разбиению цементных скоплений на более мелкие составляющие), повышая тем самым эффективность его использования.

Пластифицирующее действие ПАВ (уменьшение расхода воды и цемента при изготовлении бетонов и растворов).

Хорошо известно, что при изготовлении бетонов и растворов всегда приходится решать противоречивую задачу. С одной стороны нужно ввести в бетонную (растворную) смесь как можно больше воды для обеспечения легкости её вымешивания, транспортировки и укладки. С другой стороны, чтобы получить плотный и прочный бетон (раствор), количество воды следует минимизировать, вплоть до теоретического минимума, обусловленного водопотребностью, для достижения теста нормальной густоты.

Цементное тесто в бетоне можно считать минеральным клеем для песка и щебня. В таком клее, с одной стороны, должно быть достаточно воды, чтобы он легко распределялся по поверхности твердого тела, но с другой стороны, при разбавлении цементного клея водой, прочность склейки уменьшается.

Твердение цемента это химический процесс, обусловленный взаимодействованием двух основных реагентов – цемента и воды. Портландцемент в ходе этой реакции способен химически связать всего лишь 20 — 25% воды, от своей массы. При этом образуются твердые гидратные новообразования, которые обусловливают и формируют прочность бетонов.

Между тем при изготовлении бетонов вынуждены расходовать воды 40 — 55% от массы цемента (при условии вибрационного или другого эффективного метода уплотнения бетона). В строительные растворы, которые требуют повышенных реологических характеристик смеси, воды, добавляют еще больше – 60 – 80% от массы цемента и даже более того. Такие значительные количества воды в бетонной (растворной) смеси нужно не для протекания химических процессов твердения, а исключительно для того, чтобы получить смесь, достаточно удобную в работе при данных методах укладки и уплотнения.

Общеизвестно, что увеличение удельного расхода воды (т. е. увеличение водоцементного отношения) отрицательно сказывается на всех свойствах бетона (раствора). Та вода, которая не была связана в процессе химической реакции с цементом в гидратные новообразования, испаряется из бетона при его твердении, вызывая значительную его усадку и оставляя поры, подчас крупные, открытые, соединенные капиллярными ходами. Наличие таких пор ослабляет структуру затвердевших бетонов (растворов), при этом понижается прочность, особенно при изгибе и растяжении, повышается способность впитывать воду и агрессивные жидкости.

Любой коррозионный процесс связан с диффузией (прониканием) агрессивного вещества в тело материала. Чем больше открытых пор, тем интенсивнее идут диффузионные процессы и тем резче сказываются коррозионные воздействия на бетоны и на арматуру в них. Равным образом процессы частого попеременного намокания и высыхания, замораживания и оттаивания тоже протекают тем интенсивнее, чем больше открытая пористость цементного материала. В итоге снижается долговечность бетонных конструкций.

Таким образом, в технологии бетона заложено серьезнейшее противоречие. Мы наблюдаем большое расхождение “лезвий ножниц” между количеством воды, нужным для процесса твердения цемента, и тем количеством воды, которое мы вынуждены давать для получения удобоукладываемых систем. Как же сблизить “лезвия ножниц”? Как устранить указанное противоречие?

Если бы была возможность применять цемент, который химически связывает не 20 — 25%, а, например, 40% воды, то получали бы цементный камень с невысокой пористостью. Такой цемент есть — это глиноземистый цемент, но он достаточно дефицитен и дорог, его применение оправдано только в специальных случаях.

Существует возможность уменьшить водоцементное отношение, изготовляя бетонные смеси, уплотняемые при помощи внешнего вибровоздействия. Под влиянием вибрации бетонная смесь приобретает жидкотекучие свойства и становится более подвижной и пластичной. Однако операции вибрирования не панацея. Тем более во многих сферах вибрационное уплотнение просто невозможно применить.

Между тем, помимо способов механического уплотнения, имеется другой принципиальный и более эффективный метод уменьшения количества воды затворения при изготовлении бетонов — это использование добавок ПАВ. Эти добавки можно с успехом применять в любых бетонах, независимо от метода их уплотнения, в том числе и в вибрируемых. С помощью добавок ПАВ можно уменьшать водоцементное отношение в бетонах в среднем на 10%, а в растворах на 12 -14%.

Так как прочность бетонов и растворов зависит от водоцементного отношения, то для получения заданной прочности можно, снижая количество воды, уменьшать и дозировку цемента обычно на 8 – 10% , а иногда и более. Иначе говоря, применение поверхностно-активных веществ дает возможность экономить цемент, т. е. служит одним из важных путей к решению общей задачи рационального и экономного использования материальных ресурсов в строительстве.

Экономия цемента в низкомарочных бетонах и тощих растворах.

В ряде случае возникает необходимость рационального использования цементов высокой активности (например, широко распространенной марки “М-400”) для приготовления бетона или т.н. “тощего” раствора (кладочного или штукатурного), к которым предъявляются умеренные прочностные требования при достаточно жестких требованиях в отношении морозостойкости и водонепроницаемости.

Проектируя такие составы на высокоактивных цементах и не всегда имея возможности вводить тонко молотые добавки, разбавители для понижения активности цементов, которые, как известно, к тому же понижают морозостойкость бетона, строители становятся зачастую перед необходимостью применять бетон, обладающий значительно большей прочностью, чем это требуется, т.к. для достижения заданной подвижности бетонной смеси при достаточно низком водоцементном отношении приходится излишне перерасходовать цемент.

Возможным путем экономии в этом случае могло бы быть повышение водоцементного отношения и соответственное уменьшение расхода цемента, т. е. путь снятия излишнего запаса прочности бетона. Однако простое повышение водоцементного отношения, по сравнению с общеизвестными пределами, обычно влечет за собой снижение морозостойкости и водонепроницаемости бетона.

Применяя гидрофобизирующие ПАВ, выступающие в данном случае в качестве микропенообразователей, представляется возможным в данном случае уменьшить расход цемента, увеличив водоцементное отношение и назначив его в соответствии с требуемой прочностью бетона, учитывая, что добавки обеспечат повышение морозостойкости и водонепроницаемости бетона до приемлемых величин. Воздухововлекающие добавки позволяют в этом случае заметно уменьшить расход цемента, приблизив прочность к заданному значению и удовлетворив требованиям в отношении морозостойкости и водонепроницаемости материала.

Повышение производительности труда каменщиков и штукатуров.

В тощих растворах (кладочных и штукатурных) гидрофобизирующие ПАВ позволяют повысить т.н. комплекс удобоукладываемости за счет повышения пластической вязкости растворной смеси. Это значительным образом повышает производительность труда каменщиков и штукатуров. Достаточно сказать, что, единожды попробовав работать с такого рода добавками (иногда их в рекламных целях называют на манер “заменители извести”) каменщики впоследствии отказываются без них работать.

Уменьшение экзотермии бетона.

Чем меньше расход цемента при изготовлении бетона, тем ниже его экзотермия – выделение тепла в ходе химического взаимодействования цемента и воды

При возведении многих массивных монолитных бетонных конструкций, например гидротехнических, необходимо, чтобы экзотермия бетона была, но возможности невысокой, иначе могут возникнуть значительные градиенты температур в бетоне, так как наружные слои бетонной конструкции охлаждаются водой или воздухом, а его ядро – центральная часть – может разогреться до достаточно высоких температур. При этом возникают значительные напряжения в теле бетонного массива, которые обуславливают появление трещин и неоднородностей.

Введение добавок ПАВ позволяет снизить расход цемента и тем самым уменьшить экзотермию бетона.

Уменьшение остаточной влажности пропаренных изделий.

Очень важно, чтобы остаточная влажность изделий после пропаривания была по возможности низкой. Особенно это касается стеновых ограждающих конструкций. Монтаж таких изделий в конструкцию может вызвать полное промерзание стен в первую же зиму.

Повышенная отпускная влажность также способствует коррозии арматуры и закладных деталей, способствует длительному, порой многолетнему, специфическому сырому “бетонному” запаху в помещениях.

Благодаря добавок ПАВ удается снизить отпускную влажность бетонных изделий после пропаривания, а гидрофобизирующие добавки, кроме того, еще и облегчают и ускоряют их высыхание.

Повышение жизнеспособности бетонных (растворных) смесей.

Использование добавок ПАВ позволяет повысить жизнеспособность бетонных (растворных) смесей, что особенно важно при их современном централизованном производстве на автоматизированных заводах. Заводы представляют собой крупные предприятия, каждое из них снабжает множество строительных объектов готовыми бетонными (растворными) смесями. Часто проходит 1.5 — 3 часа с момента изготовления смесей до применения их в дело. В этот период, особенно при жаркой погоде, нередко происходит преждевременное схватывание смесей, возникают производственные потери, ухудшаются свойства затвердевших материалов. Такие потери могут быть весьма значительными.

Так, при централизованном изготовлении растворов, когда их перевозят на расстояние 20 — 40 км и они еще некоторое время хранятся на объекте, потери иногда достигают 15% количества выпускаемого раствора и более. Иначе говоря, почти шестая часть продукции может оказаться неиспользованной. Для предотвращения преждевременного загустения смесей товарных бетонов и растворов и применяют соответствующие добавки ПАВ.

Добавки ПАВ нередко используют также при изготовлении монолитных бетонных конструкций, например в гидротехнических сооружениях, когда требуется, чтобы слой уложенного бетона не успел схватиться, пока не уложат новый (верхний) слой бетонной смеси, ибо сцепление “свежего бетона со “старым” происходит очень плохо, что вызывает ряд нежелательных последствий.

Бетонные смеси, получаемые при помощи электро- или паро- разогрева, применяются в производстве сборного железобетона. Такой предварительный разогрев способствует сокращению тепловлажностной обработки на 30 — 35%. Но с повышением температуры резко ускоряется схватывание цемента. Чтобы предотвратить загустевание бетонных смесей, вводят добавки ПАВ, благодаря чему удается формовать смеси в горячем виде.

(продолжение следует)

 

www.ibeton.ru

Физико-химические процессы при тепловой обработке бетона

Заключительным и наиболее длительным этапом в производстве железобетонных изделий является твердение бетона. В течение этого этапа формируется структура бетона, способная воспринимать механические нагрузки и противостоять агрессивному действию окружающей среды.

С целью ускорения твердения бетона на заводах железобетонных изделий применяется его тепловая обработка.

При этом режимы твердения железобетонных изделий следует назначать, исходя из необходимости создания оптимальных условий твердения и возможно более полного использования прочностных свойств бетона при возможно меньшем удельном расходе цемента и с обязательным обеспечением необходимой долговечности бетона.

Таким образом, дальнейшее совершенствование режимов тепло-влажностной обработки должно проводиться только на основе всестороннего и углубленного исследования процессов твердения вяжущих и физических явлений, возникающих в бетоне при твердении.

Зная сущность, причины возникновения и взаимосвязь физических процессов, происходящих в бетонах при прогреве, и их связь с физико-химическими процессами гидратации и твердения цемента, можно управлять структурообразованием бетона путем создания оптимальных параметров среды в тепловом агрегате и получать бетоны более высокого качества при одновременном сокращении цикла твердения и достаточно полном использовании цемента.

Свойства бетона определяются его структурой, а последняя, в свою очередь, зависит от физико-химических процессов, протекающих при твердении.

Твердение следует рассматривать как результат протекания и взаимодействия двух процессов:

- гидратообразования

- структурообразования

При этом процесс гидратообразования является первичным процессом, служит способом генерации новой фазы специфического состава и сам по себе не определяет роста прочности цементного камня и бетона.

Структурообразование–это процесс образования пространственного каркаса и его упрочнения. Именно этот процесс определяет рост прочности цементного камня.

Так как эти два процесса являются взаимодействующими, то только при определенном соотношении их скоростей на различных этапах твердения можно получать бетон с заданными свойствами.

В настоящее время до сих пор остается дискуссионным вопрос о механизме гидратации вяжущих, хотя с точки зрения получения максимальной прочности тип реакции не имеет значения.

По мере же повышения температуры твердения ускоряется кинетика процесса гидратообразования, последовательность и полнота фазовых превращений, хотя при этом не изменяется состав новообразований и не уменьшается степень гидратации вяжущего.

Роль тепло-влажностной обработки при t<=1000C сводится лишь к ускорению химических реакций без качественного изменения процесса гидратации цемента в целом (рис.13.).

Как видно из рис.13. скорость гидратации при повышении температуры с 200С до 800С увеличивается в 3 раза.

Исходя из взаимосвязи процессов гидратообразования и структурообразования, можно заключить, что

повышение температуры

твердения ускоряет и процесс

Рис.13 Зависимость скорости структурообразования (рис.14).

гидратации от температуры среды

При этом скорость структурообразования при повышении температуры также увеличивается в 3 раза.

Увеличение скорости структурообразования связано, по-видимому, с образованием крупных, лучше закристаллизованных новообразований, что, однако, приводит к снижению прочности термообработанного бетона.

Рис.14 Скорость

структурообразования

Как было установлено Ребиндером и Сегаловой, прочность камня зависит от дисперсности новообразований, которая определяет прочность и количество контактов срастания.

Процесс структурообразования связан с обратным ему процессом- деструкцией, которая особенно ярко выражается при тепловлажностной обработке.

В настоящее время большинство исследователей связывают возникновение деструктивных процессов с температурным расширением жидкой и газообразной фаз бетона при нагревании.

Действительно, расширение газообразной и жидкой фаз при нагревании свежеуложенного бетона будет приводить к разрыхлению его структуры (увеличению пористости). Теоретический расчет температурного расширения показал, что 97% приращения объема образца при нагреве идет за счет газообразной и жидкой фаз, что свидетельствует о наиболее отрицательной их роли в процессах формирования структуры свежеуложенного бетона при прогреве.

Однако, вышесказанное в большей мере относится к изделиям, прогреваемым без формы или в форме с большой открытой поверхностью. А если изделие прогревается в закрытой форме? Что здесь является причиной развития деструктивный процессов?

Дело здесь состоит в том, что накопление гидратных образований и срастание их в пространственный каркас носит противоречивый характер.

С одной стороны накапливание продуктов гидратации обуславливает дальнейшее, более тесное расположение кристаллогидратов и их срастание, а с другой – начинает все более отрицательно сказываться на прочности объемный эффект роста кристаллов, так как он происходит в “стесненных” условиях.

В результате в твердеющей системе возникают отрицательные напряжения, приводящие к ее деструкции, и, таким образом, в системе устанавливается определенное соотношение между структурообразующими и деструктивными факторами.

Если превалируют деструктивные явления, то прочность системы понижается, а если превалируют структурообразующие явления, то прочность системы возрастает.

Посмотрим теперь на связь этих явлений с кинетикой процессов гидратообразования и структурообразования.

На начальных этапах твердения высокая скорость гидратообразования является положительным фактором, так как образующиеся гидратные новообразования способствуют формированию непрерывного пространственного каркаса, т.е. развитию процесса структурообразования.

Если же поддерживать высокую скорость гидратообразования на последующих этапах твердения, когда набрал силу процесс структурообразования, то это отрицательно скажется на росте прочности цементного камня, так как интенсивная поставка новых продуктов реакции будет разрушать формирующиеся кристаллизационные контакты.

Таким образом, только при разумном сочетании скоростей процессов гидратообразования и структурообразования можно получать цементный камень с заданными свойствами.

Теперь, несколько слов об автоклавной обработке бетонов.

В отличие от тепловлажностной обработки при t<=1000C и атмосферном давлении, автоклавная обработка существенно изменяет фазовый состав новообразований, причем образование того или иного гидросиликата кальция определяется отношением C/S в исходном вяжущем, температурой и длительностью обработки.

При автоклавной обработке все минералы портландцементного клинкера вступают в химическую реакцию с кремнеземом. При этом образуется группа малоосновных гидросиликатов кальция “семейства тоберморита ” с обобщенной формулой . Эти гидросиликаты являются основной стабильной фазой цементирующего вещества бетонов автоклавного твердения, обладающих высокой прочностью.

Экзотермия цементов.

Реакция гидратации клинкерных минералов и цемента, вследствие которой происходит их схватывание и твердение, сопровождается тепловыделением. Многочисленными опытами установлена определенная связь между минералогическим составом, гидратацией, тепловыделением и твердением цементов.

Тепловыделение, являясь прямым следствием гидратации цемента, характеризует развитие процессов твердения бетонов и растворов и при прочих равных условиях определяет их технические свойства. Оно может оказывать как положительное, так и отрицательное влияние на формирование структуры и технических свойств бетонов и растворов.

В факте тепловыделения в бетоне скрыто противоречие, которое выражается в том, что нагревание изделий может быть полезным для создания благоприятных условий твердения и в то же время оно может вызвать напряженное состояние, нарушение структурной сплошности.

Чтобы во всех случаях направленно использовать тепловыделение, мы должны владеть точным расчетом тепловых полей в бетонных и железобетонных изделиях, обеспечить равномерность их распределения.

Однако на пути решения этой задачи имеются большие трудности, связанные с разнообразными условиями распределения тепла и влаги внутри бетона, значительными их градиентами, а зачастую и различной направленностью движения влаги и тепла.

Вследствие изменения физических констант бетона во времени и нестационарности потоков и тепломассообмена с внешней средой теоретические расчеты значительно усложняются. Многие вопросы еще подлежат экспериментальному исследованию по строго обоснованным научным методикам, с глубоким пониманием применения законов термодинамики.

Рассмотрим некоторые данные, касающиеся тепловыделения цементов (рис. 15).

Составляющие цементный клинкер минералы обладают разным тепловыделением. Так, и отличаются не только высоким, но и быстрым тепловыделением. и (особенно) являются малотермичными и выделяют тепло значительно медленнее.

Отсюда следует важный технологический вывод:если нужно использовать низкотермичные портландцементы, то следует использовать цементы с низким содержанием и за счет повышения

Рис.15 Экзотермия клинкерных минералов содержания в них

алюмоферритной фазы.

Опыты, проведенные Заседателевым и Мамедовым, показали, что решающим фактором, определяющим тепловыделение, является температура, при которой происходит гидратация цемента, а давление оказывает незначительное влияние на выделение тепла (рис. 16).

С целью снижения тепловыделения и

повышения водостойкости бетона в

отечественной и зарубежной практике

широко применяются активные

минеральные добавки (трепел, зола-унос и

др.).

Проведенные исследования показали,

Рис. 16 Тепловыделение что введение активной гидравлической

при гидратации цемента добавки до 25% приводит к небольшому

в зависимости от температуры

уменьшению тепловыделения. В этом случае большое значение имеет тонкость помола цемента и активность составляющих компонентов.

Более эффективным является применение шлакопортландцемента, который имеет замедленное тепловыделение в начальные сроки твердения, хотя через длительный промежуток времени, тепла выделяется столько же, сколько и цементом без добавки шлака.

Во время тепловой обработки в бетоне за первые несколько часов выделяется значительное количество тепла, которое следует учитывать в энергетическом балансе тепла, затрачиваемого на нагрев изделий. Внутри бетонной плиты за счет экзотермии цемента развиваются температуры, значительно превышающие температуру среды и поверхности изделий. Вследствие этого получается отличный от расчетного режим твердения и возникают значительные температурные градиенты, которые могут вызвать образование трещин в изделиях.

У бетона на портландцементах тепловыделение в процессе прогрева может достигать таких значений, которые соответствуют подъему температуры за счет экзотермического тепла на 70–800С. При этом наблюдается неравномерность температурных полей и изменение влажностного режима в бетоне. Поэтому режим и длительность тепловой обработки следует назначать и регулировать с учетом саморазогрева бетона.

Несколько слов об управлении процессом термообработки. В настоящее время автоматическое управление режимами тепловой обработки на заводах железобетонных изделий осуществляется неправильно. Обычно регулируют температуру среды в установке, а во время изотермической выдержки через 4-6 часов температура бетона в изделиях превышает на несколько градусов температуру среды в камере. В это время начинается потеря влаги. Для бетона (особенно тяжелого) такой режим является неоптимальным, поэтому температура среды установки должна корректироваться по температуре бетона.

Это обстоятельство следует учесть при выполнении курсового проекта, а в дальнейшем и при дипломировании.

Методов для определения тепловыделения существует очень много. Наиболее широкое распространение в настоящее время получил метод, разработанный в институте ВНИИЖелезобетон.

Тепловыделение с достаточной для практических расчетов точностью можно определить по формуле:

кДж/кг (44)

Где - количество градусо-часов тепловой обработки.

(45)

а – эмпирический коэффициент

а=0,32+0,002 290

а=0,84+0,0002 >290

М – марка цемента

Тепловыделение бетона определяется как:

(46)

где Ц – расход цемента на 1 бетона в кг.

С другими методами расчета вы можете познакомиться в соответствующей литературе.

Тепловыделение при гидратации цемента может быть рассчитано по формуле И.Д.Запорожца:

Мкал/м3

- максимальное удельное тепловыделение цемента

=7* Мкал/кг

Ц – расход цемента, кг/

– время прогрева

- коэффициент темпа тепловыделения, -1

=1,8*

С увеличением В\Ц тепловыделение повышается, а повышение начальной температуры приводит к значительному увеличению удельного тепловыделения цемента.

Совершенно по-другому обстоит дело при твердении бетона в камерах непрерывного действия. Здесь, если не будут приняты соответствующие меры, вода может начать испаряться в раннем возрасте бетона, что ухудшает качество изделий.

Интенсивное испарение воды, которое неравномерно распределено по толщине бетона, создает разную усадку под действием капиллярных сил. Это приводит к образованию сложного напряженного состояния и появлению трещин на поверхности бетона в зоне наибольших растягивающих усилий при укороченных режимах тепло-влажностной обработки.

С увеличением длительности изотермии отрицательно влияние испарения влаги на прочность бетона при <1 будет увеличиваться.

Учитывать результаты процесса испарения воды из бетона необходимо и при тепловых расчетах камер, так как процесс испарения воды из бетона происходит главным образом за счет тепла, подаваемого извне в камеру.

На испарение влаги из бетона влияет и его структура, характеризуемая различным В\Ц и видом бетона. При повышении В\Ц укрупняются поры и капилляры бетона. Известно, что парциальное давление паров над менисками таких капилляров меньше, чем у более крупных. Следовательно, испарение из крупных капилляров происходит более интенсивно, чем у мелких, а процессы конденсации влаги протекают в обратном порядке по отношению к испарению в зависимости от радиусов капилляров. При постоянных условиях количество испарившейся влаги при тепловой обработке увеличивается с ростом В\Ц, а при В\Ц=const- в зависимости от температуры прогрева.

Однако, существует лишь несколько работ, посвященных изучению испарения влаги из бетона в процессе тепловой обработки и в них имеются существенные разногласия.

По данным Бужевича, скорость испарения воды из бетона в начальный период твердения равна скорости испарения воды со свободной поверхности.

Вслед за этим, наступает второй период, в течение которого испарение воды их бетона происходит более интенсивно, затем наступает третий период, когда скорость испарения значительно уменьшается по сравнению со скоростью испарения со свободной поверхности.

Повышение скорости испарения воды во второй период обусловлено в основном шероховатостью поверхности бетона, что увеличивает поверхность испарения, и тепловыделением цемента, вследствие чего, как уже говорилось, температура бетона становится выше температуры воды, находящейся в той же среде.

Следует отметить еще очень интересную работу Малининой, где показано, что испарение влаги из бетона существенно влияет на качество изделий, причем влияние это неоднозначно.

 

studopedya.ru

Большая Энциклопедия Нефти и Газа, статья, страница 2

Экзотермия

Cтраница 2

Сульфатостойкий портландцемент обладает повышенной сульфа-гостойкостью и пониженной экзотермией при замедленной интенсивности твердения в начальные сроки. Сульфатостойкий портландцемент не должен содержать активных минеральных добавок. Применяется для цементирования эксплуатационных скважин ПВ, с использованием кислотных растворителей металлов, монтажа фундаментов для установки раствороподъемных насосов и оборудования устья эксплуатационных и вспомогательных скважин. Сульфатостойкий цемент выпускается марки 400 с пределом прочности на изгиб и сжатие после 28 сут с момента затвердения соответственно 5 5 и 40 МПа. Начало схватывания раствора должно наступать не ранее 45 мин и заканчиваться не позднее 12 ч от начала затворения.  [16]

В меньшей степени исследователи уделяли внимание вопросам экзотермии бетона при строительстве аэродромных монолитных цементобетонных покрытий, полагая, что повышение температуры в бетоне не является столь значительным, чтобы его учитывать. Это объясняется относительно небольшими толщинами монолитных слоев в сравнении с их плановыми размерами, а следовательно, интенсивной отдачей внутреннего тепла бетона окружающей среде и непродолжительностью процесса тепловыделения в бетоне.  [17]

В результате исследований был создан портландцемент с умеренной экзотермией, который изготовляется из клинкера нормированного химического и минералогического составов, обеспечивающего умеренную зкзотермию при несколько повышенной суд ьфатостой кости, необходимой при изготовлении бетонных и железобетонных конструкций наружных зон гидротехнических массивных сооружений, работающих в условиях систематического многократного замораживания и оттаивания в пресной или слабо минерализованной воде.  [18]

В результате исследований был создан портландцемент с умеренной экзотермией, который изготовляется из клинкера нормированного химического и минералогического составов, обеспечивающего умеренную экзотермию при несколько повышенной сульфатостойкости, необходимой при изготовлении бетонных и железобетонных конструкций наружных зон гидротехнических массивных сооружений, работающих в условиях систематического многократного замораживания и оттаивания в пресной или слабо минерализованной воде.  [19]

При бетонировании больших бетонных массивов эффективно применение способов экзотермии.  [21]

Тепловой эффект твердения бетона в значительной мере определяется высокой экзотермией образования гидрохлоралюми-ната кальция. Однако экзотермия цемента сказывается лишь в первые дни твердения холодного бетона в сравнительно массивных конструкциях ( с Мп5) и повышается с увеличением добавки хлористого кальция.  [22]

В образцах смол, смешанных с отвердителями, обнаруживают экзотермию уже при низких температурах, экзотермия при температуре около 300 С вызывается вторичной экзотермической реакцией.  [23]

При бетонировании в зимних условиях с укладкой бетона по способу экзотермии необходимо проведение расчетов, определяющих теплопотери в процессе твердения и размер тепловыделений. Это необходимо для того, чтобы при сложившемся тепловом балансе было обеспечено твердение бетона в заданные сроки.  [24]

Такая способность твердения при низких температурах у глиноземистого цемента объясняется повышенной экзотермией во время гидратации составляющих его минералов. Это действие экзотермии начинает сказываться уже тогда, когда бетонное сооружение имеет размеры, превышающие 30 - 50 см по основным измерениям.  [25]

Преимуществом быстротвердеющих цементов является большая скорость гидратации, связанные с этим высокая экзотермия и повышенная степень заполнения капиллярных пор; последнее повышает их морозоустойчивость, а также надежность твердения в ранний период при пониженных и даже отрицательных температурах.  [26]

Пуццолановый портландцемент отличается от портландцемента замед -, ленным твердением и пониженной экзотермией. Шлакопортландцемент не может противостоять вредному влиянию топливных шлаков, поэтому применение его ограничивается приготовлением растворов для малоответственных узлов наружной кладки.  [27]

На рис. 18.6 показаны типичные графики распределения температуры по диаметру зерна при экзотермии.  [28]

Цементы, содержащие большое количество соединений, отличающихся большим тепловыделением, или экзотермией, совершенно непригодны для массивных сооружений. Это происходит потому, что выделяющаяся теплота вызывает неравномерные внутренние напряжения в бетонных массивах, что в свою очередь обусловливает появление трещин и другие нарушения однородности бетона.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Особенности твердения бетонов и растворов в зимних условиях

Современное производство строительных материалов

При среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С необходимо принимать специальные меры по выдерживанию уложенного бетона (раствора)1 в конструкциях и сооружениях, бетонируемых на открытом воздухе.

Способ выдерживания бетона при зимнем бетонировании должен быть установлен в ППР на основании технико-экономического сопоставления способов для конкретных условий. Бетон может быть выдержан способами, указанными в рекомендуемом прил. 9 СНиП 3.03.01-87, а также:

Экзотермическим способом, в том числе с компенсационным обогревом, при обеспечении саморазогрева всего объема уложенного бетона;

В обогреваемых тепляках, коробах, оболочках, под съемными колпаками и в других подобных ограждающих конструкциях;

Комбинированными способами, сочетающими способы активного прогрева уложенного бетона с последующим выдерживанием его способом термоса.

Способ термоса следует применять при обеспечении начальной температуры уложенного бетона в интервале от 5 до 10° С и последующем сохранении средней температуры бетона в этом интервале в течение 5 - 7 сут.

Экзотермический способ следует применять при обеспечении начальной температуры уложенного бетона не ниже 15 °С (по всему объему конструкции, в том числе по контакту с ранее уложенным бетоном и основанием) при теплозащитных свойствах ограждающих конструкций опалубки, когда уровень теплопотерь не превышает 60 % тепла, выделяемого бетоном в интенсивный период саморазогрева (в течение первых 3 сут).

Выдерживать бетон без обогрева за счет введения противоморозных добавок следует в случаях, когда невозможно обеспечить температуру уложенного бетона в интервале от 5 до 10 °С в течение первых 5 - 7 сут. Нормальной температурой среды для твердения бетона условно считается 15 ... 20°С. При пониженной температуре прочность бетона нарастает медленнее, чем при нормальной. При температуре бетона ниже 0 °С твердение практически прекращается, если только в бетон не добавлены соли, снижающие точку замерзания воды. В зимний период наблюдаются частые переходы температуры через 0 °С, что непосредственно отражается на твердении бетона. Бетон, начавший твердеть, а затем замерзший, после оттаивания продолжает твердеть в теплой среде, причем, если он не был поврежден замерзающей водой в самом начале твердения, прочность его постепенно нарастает, однако, как правило, отстает от роста прочности бетона, твердевшего при нормальной температуре.

Бетон, укладываемый зимой, должен зимой же приобрести прочность, достаточную для распалубки, частичной нагрузки или даже для полной загрузки сооружение Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это объясняется тем, что свежий бетон насыщен водой, которая при замерзании расширяется и разрывает связи между поверхностью заполнителей и слабым цементным камнем. Прочность бетона тем ближе к нормальной, чем позже он был заморожен. Кроме того, из-за раннего замораживания значительно уменьшается сцепление бетона со стальной арматурой в железобетоне.

При любом способе производства бетонных работ бетон следует предохранить от замерзания до приобретения им минимальной (критической) прочности, которая обеспечивает необходимое сопротивление давлению льда и сохранение в последующем при положительных температурах способности к твердению без значительного ухудшения основных свойств бетона.

При использовании быстротвердеющего высокопрочного цемента необходимое время выдерживания сокращается примерно в полтора раза. Если к бетону предъявляются высокие требования по динамическим свойствам, водонепроницаемости и морозостойкости, то его следует предохранять от замерзания до достижения марочной прочности, так как замораживание при минимальной прочности, не сказываясь заметно на прочности бетона при сжатии, может нарушить его структуру и ухудшить эти особые свойства.

При введении в бетон повышенного количества солей - хлористого кальция СаС12, хлористого натрия NaCl, нитрата натрия NaN03, поташа К2С03 — он приобретает способность медленно твердеть при отрицательных температурах, так как соли понижают точку замерзания воды и сохраняют жидкую фазу в бетоне. Количество соли, добавленное в бетон, зависит от ожидаемой средней температуры твердения бетона.

Бетонная смесь с добавкой поташа быстро густеет и схватывается, что затрудняет ее укладку в опалубку Для сохранения удобоукладываемости бетонной смеси с поташом в нее добавляют СДБ или мылонафт Для приготовления бетонной смеси с противоморозными добавками можно использовать холодные заполнители, укладывать бетонную смесь с температурой до —5°С.

Бетон с добавкой нитрита натрия при температуре —5 °С твердеет медленнее, а при температурах ниже —10 °С почти так же, как бетон с добавкой хлористых солей.

Способ зимнего бетонирования с применением противоморозных добавок прост и экономичен, но большое количество соли, вводимой в бетон, может ухудшить структуру, долговечность и некоторые особые свойства. При эксплуатации конструкции во влажных условиях имеется опасность коррозии арматуры от действия хлористых солей (нитрит натрия и поташ коррозии не вызывают). Кроме того, образующиеся в процессе твердения бетона с добавками едкие щелочи могут вступить в реакцию с активным кремнеземом, содержащимся в некоторых заполнителях, и вызвать коррозию бетона.

Поэтому бетон с противоморознымн добавками не рекомендуется применять в ответственных конструкциях, в конструкциях, предназначенных для эксплуатации во влажных условиях, при наличии реакционноспособного кремнезема в зернах заполнителя, а бетон с хлористыми солями — в железобетонных конструкциях.

Гипсовые вяжущие материалы, воздушные вяжущие материалы, получаемые на основе полуводного сульфата кальция либо безводного сульфата кальция (ангидритовые вяжущие). По условиям термической обработки, а также по скорости схватывания и твердения гипсовые вяжущие материалы делятся на 2 …

Материалы, предназначенные для предохранения конструкций и инженерных сооружений от действия воды, называют гидроизоляционными. В зависимости от применяемого вяжущего гидроизоляционные мате-риалы подразделяют на битумные, дегтевые и полимерные. По способу нанесения их …

Комплексные добавки, получаемые при объединении активных минеральных компонентов и органических модификаторов, называют органоминеральными добавками (ОМД). Использование органоминеральных добавок в бетонах произвело революцию в строительном производстве. Бетоны, в состав которых могут …

msd.com.ua

Портландцемент с умеренной экзотермией - Справочник химика 21

    Портландцемент с умеренной экзотермией [c.493]

    В результате исследований был создан портландцемент с умеренной экзотермией, который изготовляется из клинкера нормированного химического и минералогического составов, обеспечивающего умеренную экзотермию при несколько повышенной сульфатостойкости, необходимой при изготовлении бетонных и железобетонных конструкций наружных зон гидротехнических массивных сооружений, работающих в условиях систематического многократного замораживания и оттаивания в пресной или слабо минерализованной воде. [c.308]

    Портландцемент, пластифицированный и гидрофобный портландцементы Сульфатостойкий портландцемент и с умеренной экзотермией. .... [c.22]

    Портландцемент с умеренной экзотермией выпускают марок 300 и 400. Этот цемент не должен содержать активных минеральных добавок в остальном его свойства те же, что и у обыкновенного портландцемента. [c.29]

    По ГОСТу 970—61, клинкер, применяемый для изготовления портландцемента с умеренной экзотермией, по химическому и расчетному минералогическому составу имеет ЗСаО 5102 не более 48% ЗСаО-АЬОз—не более 7,5%. [c.308]

    Исследования в области получения портландцемента для строительства массивных фундаментов, проведенные кафедрой вяжущих веществ МХТИ им. Менделеева, Гипроцементом, показали, что умеренная экзотермия происходит в результате некоторого снижения содержания ЗСаО-5102 и ЗСаО-АЬОз и введения в состав цемента различных добавок. [c.308]

    Характеристики состава сульфатостойкого портландцемента сульфатостойкого пуццоланового портландцемента портландцемента с умеренной экзотермией [c.187]

    В соответствии с требованиями строительства нашей промышленностью выпускается специальный портландцемент с умеренной экзотермией. [c.484]

    Для понижения температуры твердеющего массивного бетона наряду с применением портландцемента с умеренной экзотермией уменьшают расход цемента на 1 л бетона, а также охлаждают [c.308]

    Портландцемент с умеренной экзотермией выпускается двух марок 400 и 500 при маркировке по ГОСТ 970—61 и 250 и 300 при маркировке по ГОСТ 10178—62. [c.495]

    ГОСТ 4797—56 требует, чтобы для бетона массивных гидротехнических конструкций применялись цементы, тепловыделение которых не превышало бы через 3 дня 50 и через 7 дней 60 кал г. Нашей цементной промышленностью для этой цели выпускается так называемый портландцемент с умеренной экзотермией. Он отличается [c.494]

    Для изготовления моно.титных бето1шых конструкций обычно используют портландцемент с умеренной экзотермией, в котором понижено содержание СзА и СзЗ. Нарастание прочности в нем замедленно, хотя предельная ве шчина прочности остается неизменной. [c.245]

    К гидравлическим, вяжущим вещест.вам относят портландцемент, глиноземистый цемент, пуццолановые цементы, шлаковые Цементы, цементы с микронаполнителями, расширяющиеся цементы, гидравлическую известь, романцемент. Существует ряд разновидностей этих вяжущих. Так, в зависимости от состава различают портланд-цементы обыкновенный, алитовый, белнтовый, алюминатный, алю-моферритный, ферритный, магнезиальный в соответствии со свойствами и областями применения — обыкновенный, быстротвердею-щий, особо быстротвердеющий, высокопрочный, пластифицированный, гидрофобный, сульфатостойкий, с умеренной экзотермией, тампонажный, белый и цветные, для асбестоцементных изделий, для бетонных покрытий автомобильных дорог (дорожный). Наряду с этим по заданиям крупных потребителей выпускают портландце-менты, обладающие специальными свойствами и отличающиеся своим химическим, минералогическим и вещественным составам. [c.8]

    Наряду с обыкновенным портландцементом, пуццолановым. портландцементом и шлакопортландцементом промышленностью выпускаются их разновидности, отличающиеся некоторыми сп.ецифическим.и свойствами. Этими разновидностями являются быстротвердеющий портландцемент, сулйфатостойкий, по.рт ландцемент с умеренной экзотермией, дорожный, тампонажный, белый, цветной, пластифицированный, гидрофобный и др. [c.26]

    Получение портландцемента с умеренной экзотермией достигается применением клинк ра с относительно низким содержанием высокоэкзотермнчных минералов. К ним относятся трехкальциевый силикат и трехкальциевый алюминат содержание трехкаЛьцневого силиката в цементе с умеренной экзотермией не должно превышать 50%, а трехкальциевого алюмината— в%. [c.29]

    Для получения бетона с хорошими пассивирующими свойствами целесообразно использовать портландцемент, сульфатостойкий портландцемент и портландцемент с умеренной экзотермией. При использовании шлакопорт-ландцемента последний должен содержать не более 50% шлака. В глиноземистом цементе и шлакопортландцементе с содержанием шлака более 50% меньшее количество основных (щелочных) соединений, в связи с чем их реакционная емкость при воздействии кислых газов понижена и они сравнительно быстро нейтрализуются. Скорость нейтрализации может быть снижена до допустимых пределов, если уменьшить проницаемость бетона. Не обладают необходимыми пассивирующими свойствами бетоны на гипсоцементнопуццолановых вяжущих. Наиболее стойки в средах, содержащих сернистый газ. хлор, хлористый водород, бетоны на низкоалюминатных портландцементах. Нейтрализация таких бетонов и проникание хлоридов происходят с наименьшей скоростью. [c.193]

chem21.info


Смотрите также