Как происходит прогрев бетона — схема укладки провода ПНСВ. Электропрогрев бетона схема


схема подключения, технология прогревочных работ

 

Технология прогрева бетона электродамиЧтобы бетон во время твердения правильно набрал прочность, в зимнее время его обогревают различными способами. Технология прогрева бетона электродами является одним из них. Процесс этот можно проводить как самостоятельно, так и в комплексе с другими методами обогрева. Особенно актуально электродный метод применять при заливке раствором монолитных вертикальных конструкций.

Необходимость прогрева в зимний период

Работы, связанные с заливкой бетонного раствора, строители проводят в любое время года. Одним из компонентов, необходимых для набора прочности бетоном, является вода. Если в теплое время твердение материала проходит естественным способом, так как гидратация цемента протекает успешно, то зимой это невозможно. При низких температурах в бетоне происходят следующие процессы:

  1. Вода замерзает и перестает взаимодействовать с цементом. В итоге процесс твердения бетона практически останавливается.
  2. Лед, постепенно увеличиваясь в объеме, снижает плотность застывающего раствора, и при оттаивании бетон начнет просто крошиться.
  3. В связи с образованием наледи, в месте соединения арматуры с раствором происходит снижение прочности.

Как прогревается бетон электродамиПоэтому стоит задача остановить эти процессы, чтобы получить качественный бетон, способный выдержать любые нагрузки. Обычно для этих целей применяют комплексные меры, чтобы достичь наилучшего результата. При минусовых температурах в бетон добавляют вещества, способные предотвращать замерзание воды, но при сильных морозах без обогрева раствор все равно замерзнет. Поэтому дополнительно используют обогрев с помощью электродов, между которыми в жидком бетоне появляется электрическое поле и он начинает нагреваться.

Виды электродов

В зависимости от расположения прогревочных электродов различают поверхностное и погружное их использование. В первом случае на поверхность раствора накладываются пластины, к которым присоединяют провода.

После окончания процесса такие электроды можно использовать повторно на других объектах. При втором способе электроды погружают в раствор, в дальнейшем они в нем остаются.

Всего различают 4 вида электродов:

  • пластинчатые;
  • полосовые;
  • струнные;
  • стержневые.

Прогрев бетона электродамиТехнология электропрогрева бетона электродами, сделанными в виде пластин, заключается в том, что они размещаются между внутренней стороной опалубки и бетонным раствором. К каждой пластине подключают провода, подходящие к разным фазам трансформатора.

В результате между пластинами образуется электрическое поле и раствор начинает прогреваться. Применяется такой способ в основном при небольших объемах заливки. Полосовые электроды представляют собой металлические пластинки шириной не более 50 мм. Располагают их на поверхности раствора и подключают через одну к одной фазе, а оставшиеся — к другой.

Их используют для обогрева плоских и невысоких изделий. Струнные проводники используют при заливке высоких цилиндрических конструкций, например, колонн. В центр конструкции помещается электрод, а сама опалубка охватывается токопроводящим листом. Лист и центральную струну подключают к разным фазам.

В качестве стержневых проводников используют нарезанные арматурные прутья диаметром от 7 до 11 мм, которые заглубляют в раствор согласно рассчитанному расстоянию. Таким образом осуществляют прогрев сложных конструкций.

Технология прогрева

Как и когда прогревают бетонВсе работы строители проводят, опираясь на технологическую карту прогрева электродами монолитных конструкций. Сам процесс происходит при низком напряжении и высокой силе тока. Обеспечивает эти показатели использование масляного прогревочного трансформатора, работающего от сети 380 В. Очень часто для этого применяют передвижные электрические станции, которые можно доставить до самого отдаленного объекта.

Прогрев бетонной стяжки электродами

Схему подключения электродов при прогреве бетона осуществляют проводами, способными выдерживать мощность 80 Вт на 1 м его длины. Ими подключают три звена электродов к каждой фазе трансформатора так, чтобы они не касались деталей опалубки и арматуры каркаса. Контакт между проводами и электродами должен быть надежным, желательно использовать для этого резьбовое соединение.

Как только закончится заливка раствора, начинают процесс прогрева. Регулируется он с помощью трансформатора. Когда раствор жидкий, то для прогрева достаточно будет тока равного 250 А. Этот показатель достигается установлением на выходе трансформатора 100 В. По мере застывания бетонного раствора, силу тока необходимо увеличивать, для этого в трансформаторе имеются 4 ступени.

Диапазон регулировки силы тока составляет от 250 до 450 А. При отсутствии трансформатора, для этого процесса можно использовать сварочный аппарат. Во время прогрева обязательно каждый час проводят замеры температуры бетона и выходной силы тока и затем записывают показания в соответствующий журнал прогрева.

tvoidvor.com

схема укладки, характеристики провода ПНСВ, расчёт длины

 

Укладка провода пнсв для прогрева бетонаРабота с бетоном при отрицательных температурах сопряжена со сложностями. Невозможно достичь технической прочности застывшего материала, если вода в растворе замёрзнет, а зимой увеличивается срок высыхания бетона. Электропрогрев позволит решить задачу при низких финансовых расходах. При установке обогревающего оборудования важно соблюдать схему укладки провода ПНСВ для прогрева бетона.

Сферы применения метода

Невысокая стоимость и универсальность провода ПНСВ позволяют использовать этот способ подогрева бетона повсеместно. В соответствии с нормами СП 70.13330.2012, технология подходит для всех видов строительства. После затвердения материала кабель остаётся внутри, поэтому возможность приобрести недорогое и надёжное изделие позволит рассчитывать на максимальную выгоду. В зимнее время низкие температуры становятся источником дискомфорта для строителей и останавливают гидратацию цемента. Образовавшийся лёд повреждает связи в растворе, материал теряет прочность.

Чтобы бетон затвердел быстро и его характеристики не снижались, температура раствора должна составлять около 20 °C. Неоптимальные условия сделают процесс застывания долгим. Прогрев бетона ПНСВ проводом или аналогичными кабелями незаменим в таких случаях:

  • Сферы применения методаутепление монолита и опалубки отсутствует либо недостаточно;
  • значительный объем монолитной конструкции исключает равномерный прогрев;
  • неблагоприятные погодные условия;
  • важно строгое выполнение сроков строительства.

С должным подогревом, технические условия будут соблюдены.

Оптимальные характеристики кабеля

Монтаж кабеляПроверенные схемы прогрева бетона допускают использование кабеля со стальной жилой достаточной толщины — не менее 0,6 мм². Диаметр провода должен находиться в пределах 1,2−3 мм. Если в растворе содержатся агрессивные компоненты, лучше отдать предпочтение оцинкованному нагревательному элементу. Изоляция — ПВХ или полиэстер, что гарантирует высокое удельное сопротивление, обладает прочностью, устойчивостью к истиранию, не повреждается при сгибании. Технические свойства ПНСВ провода:

  1. Удельное сопротивление — 0,15 Ом/м.
  2. Рабочий температурный режим в пределах от -60°C до 50 °C.
  3. Расход — не более 60 м кабеля на кубометр раствора.
  4. Безопасный монтаж при -15°C.

Питание системы происходит посредством трехфазной сети 380 В. Для этого алюминиевый провод АВП подключают к холодным концам. Можно питать систему и с помощью бытовой сети 220 В, но важно сделать верные расчёты и использовать не менее 120 м кабеля.

Особенности монтажа

Оптимальные характеристики кабеляКабель ПНСВ укладывается «змейкой» (схема сходна с системами «тёплый пол») после монтажа опалубки и арматуры. Интервал зависит от погодных условий и может составлять 8−20 см. В проводе не допускаются натяжения, изделие крепится к арматуре посредством зажимов. Важно, чтобы токоведущие жилы не соприкасались, а радиус изгиба не был меньше 25 см. Такой подход обеспечит качественный обогрев бетона нагревательными проводами. Схема позволяет расходовать кабель экономно.

К заливке раствора приступают после вывода холодных концов и монтажа схемы подключения. Допустимо низкая температура бетона 5 °C. К проводу ПНСВ прилагается инструкция, с описанием вариантов подключения системы к источнику питания.

Подсчет длины провода

При расчёте прогрева бетона проводом ПНСВ важно учесть показатели влажности, температуры воздуха, формы будущей конструкции, её объёма, теплоизоляции. От этих нюансов зависит количество тепла, необходимое для корректного застывания бетона. Расстояние между жилами при укладке, а значит и длина нужного кабеля, изменяется исходя из температурного режима. Шаг равен 20 см, если на улице -5°C. Дальнейшее понижение температуры на 5 градусов приводит к уменьшению шага на 4 см.

Подсчет длины провода

Потребляемая мощность также важна в подсчётах. Произведение удельного сопротивления на силу тока, возведённую в квадрат, позволит узнать этот показатель для 1 метра кабеля. Сила тока в системе не должна превышать 16 А, а удельное сопротивление для провода ПНСВ 1,2 мм составляет 0,15 Ом/м.

Альтернативные системы

Кабели ВЕТ и КДБС также позволяют добиться хороших результатов. Их преимущество — простое подключение к сети 220 В через розетку или щит. Перегрузки исключены, ведь провода разделены на секции. Но цена изделий выше, финансовые потери на строительстве крупных объектов будут ощутимыми.

Технология опалубки с ТЕНТехнология опалубки с ТЕН и электродами заслуживает внимания. Посредством сварочного аппарата арматура в растворе подключается к сети. Подойдут понижающие трансформаторы прочих типов. Схема работает без провода, но расход электроэнергии возрастает. Вода — отличный проводник, а сопротивление раствора растёт во время процесса застывания.

Подогрев бетона кабелем ПНСВ популярен благодаря доступной стоимости. Его использование в быту осложнено тем, что подключение системы невозможно без знаний и оборудования.

Параллельно применяют теплоизоляцию, что ускорит процесс нагревания раствора, а снижение температуры сделает равномерным.

tvoidvor.com

Прогрев бетона электродами: технология и схема установки

Бетонирование – один из основных строительных процессов. Замерзание незатвердевшей бетонной смеси ведёт к значительной потере прочности готового строения, так как кристаллы льда вызывают расширение и разрушение структуры. Прогрев бетона электродами даёт возможность проводить строительные работы в зимнее время без ухудшения качества готовой конструкции.

Электродный метод не требует применения сложного оборудования. Принцип работы основан на свойствах электрического тока – при прохождении через влажную среду выделяется тепло, которое и способствует прогреванию бетонной смеси и её равномерному застыванию.

Режимы прогрева бетона электродами

Режим выбирают исходя из массивности и геометрии конструкции, марки бетонной смеси, погодных условий, эксплуатации возводимой конструкции. Электродный прогрев бетона проводят по одной из следующих схем:

  • две стадии: прогрев бетонной смеси и последующая изотермическая выдержка;
  • две стадии: нагрев и остывание с полной теплоизоляцией или сооружением греющей опалубки;
  • три стадии: прогрев, изотермическая выдержка, остывание.
Схема прогрева бетона

Схема прогрева бетона

При прогреве бетона электродами критично важно соблюдать температурные параметры. Процесс начинают с +5 градусов, затем увеличивают температуру со скоростью 8–15 градусов в час. Максимальные допуски зависят от марки бетона и составляют +55… +75 градусов. Для контроля проводятся периодические замеры температуры.

Температурный лист прогрева бетона

Температурный лист прогрева бетона

Время изотермической выдержки определяется на основании лабораторных исследований кубиковой прочности при сжатии. Зависит от типа цемента, температурного режима нагрева и требуемой прочности готового бетона.

Допустимая скорость остывания 5–10 градусов/час. Точный параметр зависит от объёма конструкции. Повторная теплоизоляция после распалубки требуется, если разница температур окружающего воздуха и бетонных поверхностей более 20 градусов.

Разновидности электролитов для прогрева бетона

В зависимости от вида и геометрии конструкции используются различные электроды для прогрева бетона. Для каждого из них разрабатывается своя схема подключения:

  • Струнные.
  • Стержневые.
  • Пластинчатые.
  • Полосовые.
Схема подключения электродов

Схема подключения электродов

Струнные. Изготавливают из арматуры длиной 2–3 м диаметром 10–15 мм. Используют для колонн и других подобных вертикальных конструкций. Подключают к разным фазам. В качестве одного из электродов может использоваться армирующий элемент.

Схема расположения струнных электродов

Стержневые. Представляют собой куски арматуры толщиной 6–12 мм. Располагаются в растворе рядами с расчётным шагом. Первый и последний электрод в ряду подключают к одной фазе, другие – ко 2-ей и 3-ей. Используются для участка любой сложной геометрии.

Стержневые электроды для бетона

Стержневые электроды для бетона

Пластинчатые. Подвешиваются на противоположные края опалубки без заглубления в раствор и подключают к разным фазам. Электроды создают электрическое поле, которое и прогревает бетон.

Расстановка пластинчастых электродов

Расстановка пластинчастых электродов

Полосовые. Выполняются в виде металлических полосок шириной 20–50 мм. Их располагают на поверхности раствора с одной стороны конструкции и подключают к разным фазам. Используют для плит перекрытий и других элементов в горизонтальной плоскости.

Способы установки электродов в конструкцию

Электродный прогрев бетона используется при возведении стен, колонн, диафрагм и других вертикальных элементов. Этот способ не подходит для изготовления плит.

В залитый раствор вставляют электроды с рассчитанным шагом (60–100 см), в зависимости от геометрии конструкции и погодных условий. Локальные перегревы отрицательно влияют на качество бетона, поэтому размещение электродов должно быть равномерным. Проект расстановки составляется с учётом основных норм:

Схема установки электродов в железобетонную конструкцию

Схема установки электродов в железобетонную конструкцию

  • минимальное расстояние между электродами 200–400 мм;
  • расстояние от электродов до стержней каркаса 50–150 мм;
  • расстояние от электрода до технологического шва конструкции – не менее 100 мм;
  • расстояние от крайнего ряда до опалубки – не менее 30 мм.

Если выдержать эти требования невозможно из-за размера или конструктивных особенностей прогреваемых поверхностей, электроды на опасных участках необходимо изолировать эбонитовой трубкой.

После заливки бетона нужно укрыть прогреваемый участок рубероидом, плёнкой или другим теплоизоляционным материалом – без дополнительного утепления проведение обогрева не имеет смысла.

Через понижающий трансформатор, подключенный согласно схеме, на электроды подаётся однофазный или трёхфазный переменный ток. Использовать постоянный ток нельзя, так как он запускает процесс электролиза. В электроцепь обязательно включают приборы контроля – по мере застывания требуется проводить корректировки параметров подаваемого тока.

Схема обогрева бетона с помощью кабеля

Схема обогрева бетона с помощью кабеля

Правила безопасности при электродном прогреве

Использование технологии прогрева бетона электродами на стройплощадке требует повышенного внимания к соблюдению правил безопасности:

Схема подключения электродов

Схема подключения электродов

  • Прогрев заливки с армирующей конструкцией проводится при пониженном напряжении (60–127 В).
  • Использование напряжения до 220 В возможно для прогрева локального участка, который не содержит никаких токопроводимых элементов (металлического каркаса, армирования) и не связан с соседними конструкциями.
  • Прогрев напряжением до 380 В допустим в исключительных случаях для безарматурных участков.
  • Электроды должны быть установлены в строго определенных проектом местах. Категорически нельзя допускать их соприкосновения с армирующими элементами – это приведёт к короткому замыканию и выходу из строя оборудования.

Электродный прогрев бетонной смеси необходимо выполнять в строгом соответствии с технологией. Нарушение временного или температурного режима, схемы расстановки электродов может привести к местным перегревам и недостаточному набору прочности, что впоследствии приведёт к появлению трещин в конструкции и возможному разрушению. При правильно выполненной работе раствор твердеет с равномерной усадкой, что обеспечивает однородную структуру полученного материала и прочность изделия при эксплуатации.

Видео по теме: Электропрогрев бетона

specnavigator.ru

Технология электропрогрева бетона.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Начнем со способа электропрогрева, который основан на принципе нагрева проводника при прохождении через него переменного тока. Постоянный ток для этих целей не подходит, так как при его применении происходит электролиз воды, коррозия и экранирование поверхности электродов выделяемыми газами.

Электропрогрев бетона осуществляется следующим образом. В свежеуложенный бетон вводят металлические электроды, через которые пропускают переменный электрический ток. Электрическое сопротивление свежеприготовленного бетона, уложенного в опалубку, увеличивается по мере затвердевания бетона. Оказалось, что на ранней стадии твердения бетон обладает достаточно хорошей электропроводностью; его можно отнести к проводникам второго рода с ионной проводимостью. Включенный в электрическую цепь, он нагревается при прохождении электрического тока. Какое влияние оказывает выделяющееся тепло? Оно способствует интенсификации химического взаимодействия воды с минералами цементного клинкера. А это вызывает твердение бетона. Значит электрический ток, протекающий по бетону, будет вызывать его нагревание и твердение? Да, и чем больше будет сопротивление, тем выше будет напряжение тока.

Электропрогрев стал одним из основных способов ускорения твердения бетона на зимних стройках. Подсчитано, что в настоящее время таким способом ежегодно прогревают свыше 12 млн. м3 бетона. Его используют как в монолитных конструкциях, так и в заводском производстве сборного железобетона вместо пропаривания. Это один из самых экономичных способов тепловой обработки бетона.

Электропрогрев бетона чаще применяется на больших стройках, где имеется техническая возможность использовать трансформаторы большой мощности (30-80 кВт). В российских реалиях дряхлых подстанций и электросетей недостаточной мощности, зимний прогрев бетона - это малореальное мероприятие для частного застройщика. Электрический прогрев бетона зимой, на мой взгляд - лучший метод, при проведении монолитных работ, но... Как говорится: "Чем богаты, тем и рады".

Подключение электродов от источника питания производится через трансформаторы, распределительные щиты и софиты (Рис. 6. Виды электродов, схемы их расстановки). Софит представляет собой сухую доску длиной 3–4 м с изоляторами, на ней монтируют провод, к которому присоединяют фазовые провода от электродов. Магистральные и коммутационные провода, как правило, выполняются с медной или алюминиевой жилой. Сечение проводов подбирается в зависимости от параметров силы тока. Электропрогрев ведут на пониженных напряжениях (50–127 В).

 

 

Рис. 6. Виды электродов, схемы их расстановки: а – схема сквозного прогрева пластинчатыми электродами; б – схема двухстороннего размещения полосовых электродов при сквозном прогреве бетона; в – схема одностороннего размещения полосовых электродов при периферийном прогреве бетона; г – схема размещения плоских групп стержневых электродов; д – схема прогрева бетона одиночными стержневыми электродами; е – схема прогрева бетона струнными электродами; 1 – пластин -чатый электрод; 2 – полосовой электрод; 3 – стержневой электрод; 4 – струнный электрод; 5 – металлическая опалубка.

 

Прогрев бетона зимой осуществляют путем введения в толщу бетона греющих элементов. Это могут быть трубки с циркулирующим в них теплоносителем (водой, паром или воздухом), но наибольшее распространение получили изолированные электронагревательные провода типа ПНСВ (Рис. 7. Установка электронагревательных проводов на горизонтальную конструкцию, Рис. 8. Установка электронагревательных проводов на вертикальную конструкцию). Их наматывают группами на объемный каркас железобетонной конструкции еще до укладки бетонной смеси, а по ее завершении – подключают группы к источнику переменного или постоянного тока безопасного напряжения (трансформатору) (Рис. 9. Электронагревательные провода, Рис. 10. Прогрев бетонной смеси электронагревательными проводами). Шаг намотки определяется сечением провода и должен быть таким, чтобы омическое сопротивление провода обеспечило необходимое тепловыделение. При подключении необходимо следить, чтобы концы проводов, выходящие из опалубки, были короткими, иначе на воздухе без оттока тепла они перегорят (Рис. 11. Электронагревательные провода на горизонтальной конструкции, Рис. 12. Схема раскладки электронагревательных проводов, Рис. 13. Инвентарная секция шинопроводов для коммутации греющих проводов, Рис. 14. Организация рабочей зоны электрообогрева).

 

Рис. 7. Установка электронагревательных проводов на горизонтальную конструкцию.

Рис. 8. Установка электронагревательных проводов на вертикальную конструкцию.

 

Рис. 9. Электронагревательные провода.

 

 

Рис. 10. Прогрев бетонной смеси электронагревательными проводами.

 

Рис. 11. Электронагревательные провода на горизонтальной конструкции.

Рис. 12. Схема раскладки электронагревательных проводов.

Рис. 13. Инвентарная секция шинопроводов для коммутации греющих проводов: 1 – кабельный отвод с разъемом; 2 – деревянная стойка; 3 – болты М6; 4 – шины из стальной полосы сечением 40´3 мм; 5 – секция шинопровода, изготовленная из деревянной доски, крепящейся непосредственно к опалубке; 6 – деревянные бруски сечением 40´40 мм; 7 – алюминиевая катанка диаметром10 мм.

Рис. 14. Организация рабочей зоны электрообогрева:1 – инвентарная трехфазная секция шинопроводов; 2 – прожектор; 3 – трансформаторная подстанция; 4 – диэлектрический коврик; 5 – инвентарное ограждение рабочей зоны; 6 – сигнальная лампочка красного цвета; 7 – температурные датчики.

Сооружение временного укрытия с прогревом тепловыми пушкам.(Рис. 15. Технология прогрева тепловыми пушками).

Если будет использоваться дополнительный прогрев тепловыми пушками (Рис. 16. Виды тепловых пушек, Рис. 17. Схема работы тепловой пушки), то укрытие из плёнки ПВХ укладывается не на поверхность бетона, а на временный каркас из досок, брусков и т. п. Создаётся нечто наподобие низкой «палатки» или «шатра» над бетонной конструкцией и под это укрытие ставятся тепловые пушки. Чем выше будет температура под шатром, тем быстрее будет идти процесс набора прочности, и соответственно, раньше можно будет прекратить прогрев (Рис. 18. Технологическое решение прогрева тепловыми пушками).

 

Рис. 15. Технология прогрева тепловыми пушками.

 

Рис. 16. Виды тепловых пушек.

Рис. 17. Схема работы тепловой пушки.

Рис. 18. Технологическое решение прогрева тепловыми пушками.

megapredmet.ru

ЭЛЕКТРОПРОГРЕВ БЕТОНА

ТЕХНОЛОГИЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИИ

Электропрогрев бетона может осуществляться про­пусканием тока непосредственно через свежеуложенный бетон (электродный способ) либо применением электрических обогре­вательных приборов.

Более эффективным является электродный способ электро­прогрева бетона, который основан на включении бетона в элек­трическую цепь в качестве полупроводника (сопротивления). Прохождение тока сопровождается выделением тепла непосред­ственно в теле бетона.

Электродный способ. Количество тепла, выделяю­щееся в бетоне при прохождении тока за 1 Ч, определяется формулой

Ф = 0,864/2/? Ккал/ч. (Вт),

Где / —сила тока, А

1?—омическое сопротивление бетона, Ом.

Включение бетона в цепь переменного тока осуществляется посредством электродов из арматурной и сортовой стали, закла­дываемых внутрь прогреваемого бетона или располагаемых на его поверхности. Постоянный ток, вызывающий электролиз во­ды, непригоден для электропрогрева бетона. Электропрогрев бетона следует применять для железобетонных конструкций, имеющих модуль поверхности в пределах М„ = 5-ь20[5].

Основным проводником тока в бетоне является вода с раст­воренными в ней минеральными веществами.

Электрическое сопротивление прогреваемого элемента зави­сит от удельного омического сопротивления бетона, геометриче­ской формы и размеров элементов, типа и расположения элек­тродов и количества арматуры в элементах.

В процессе прогрева бетона по мере его твердения электри­ческое сопротивление бетона возрастает и соответственно умень­шается сила тока. При увеличении сопротивления в два раза сила тока уменьшается также в два раза, в то же время ко­личество выделенного тепла уменьшится в четыре раза, так как оно зависит от квадрата силы тока. Соответствен­но понизится и температура прогреваемого бетона, что нежелательно.

Поддерживание температуры на заданном уровне достигает­ся путем повышения подводимого к изделию напряжения, регу­лирование которого производится трансформаторами в преде­лах 50—100 В. В отдельных случаях электропрогрев возможен и при повышенных напряжениях (120—220 В). В начале прогре­ва для медленного повышения температуры напряжение должно быть невысоким, затем, по мере прогрева и увеличения сопро­тивления бетона, его повышают.

При электропрогреве возможно неравномерное распределе­ние температуры и испарение влаги, причиной которого являет­ся разность парциальных давлений паров в бетоне и окружаю­щей его среде. Интенсивность испарения влаги зависит от тем­пературы и длительности прогрева, расположения электродов и утепления бетона.

Для получения одинаковой температуры во всех точках из­делия тепловыделение должно быть равномерным, т. е. плот­ность тока должна быть одинаковой, что обеспечивается выбо­ром оптимальной схемой размещения электродов и величины подводимого напряжения.

При электропрогреве применяются электроды: наружные, прикрепляемые к внутренним поверхностям форм (пластинча­тые, полосовые), и внутренние, размещаемые в толще бетона (стержневые, струнные).

Пластинчатые и полосовые электроды изготов­ляются из стали толщиной 1,5—2 Мм. Их укрепляют через 10— 20 См на внутренней стороне вертикальных поверхностей формы, концы отгибают и выводят наружу для присоединения к ним электропроводов. Элементы формы, снабженные пластинчатыми и полосовыми электродами при электропрогреве с односторон­ним или периферийным расположением полос изготовляются из токонепроводящих материалов (дерева, пластмассы). Для про­грева настилов и плит толщиной до 15 Мм применяют односто­роннее расположение полосовых электродов, подключенных к разным фазам электросети.

Стержневые электроды являются наиболее универсаль­ными, их можно применять для изделий различной формы неза­висимо от вида армирования и расположения закладных эле­ментов: фундаментных башмаков, колонн, балок, плит толщиной более 15 См и др. Применение стержневых электродов приводит к дополнительному расходу металла; так как они устанавлива­ются внутри изделия и остаются в нем после прогрева, требуют­ся дополнительные затраты труда на их установку и срезку. Стержневые электроды представляют собой короткие прутки из обрезков арматурной стали диаметром 6—10 Мм, устанавливае­мые перпендикулярно продольной оси изделия. Концы электро­дов выступают на 10—15 Мм из бетона, к ним и присоединяются провода.

Струнные электроды изготовляются из круглой стали диаметром 6—10 Мм или из 3—4-миллиметровой проволоки в 2—3 нитки, что увеличивает поверхность металла. Струны уста­навливают по длине прогреваемого изделия, концы их выводят наружу для подключения к сети и крепят к изоляторам (бетон­ным или деревянным брускам), обеспечивающим необходимое положение струн.

Установка стержневых и струнных электродов требует осо­бого внимания. Нельзя допускать их соприкасания с арматурой, так как возможно короткое замыкание (при подключении раз­ных фаз) или местный перегрев бетона (при подключении одной фазы). При прогреве стержневыми и струнными электродами можно применять формы из любых материалов — металличе­ские, железобетонные, деревянные и др.

Слой бетона между электродами и арматурой должен быть не менее 5—10 См в зависимости от принятого напряжения тока. При невозможности выдержать этот разрыв необходимо бли­жайшие к арматуре участки электродов обертывать толем или заключать в резиновые трубки.

Режим электропрогрева бетона следует назначать с учетом степени массивности изделия, вида и активности це­мента, необходимой прочности бетона и возможности обеспече­ния ее за время остывания прогретого изделия. Процесс про­грева бетона характеризуется скоростью подъема температу­ры, температурой и продолжительностью изотермического про­грева.

Режим электропрогрева, учитывающий нарастание прочно­сти бетона за время остывания, является более экономичным, но требует увеличения продолжительности тепловой обработки, а следовательно, приводит к увеличению парка форм и разме­ров производственных площадей. Для сокращения продолжи­тельности электропрогрева следует стремиться к более высоким скоростям подъема температуры бетона, применяя автоматиче­ское регулирование температуры во избежание перегрева бе­тона.

Предельная скорость подъема температуры зависит от моду­ля поверхности изделий, степени их армирования и типа приме­няемых электродов (табл. 9).

Таблица 9

Скорость подъема температуры при электропрогреве

Характеристика изделия

Тип электродов

Скорость

Подъема

Температу­

Ры,

Град/ч

Изделия сложной конфигурации (ребристые плиты, лестничные мар­

Полосовые и стержневые электроды

5—10

Ши, сантехнические блоки, колонны

И балки)

Армированные блоки прямоуголь­ного сечения, блоки фундаментов, ко­лонны и балки прямоугольного сече­ния

Пластинчатые и полосо­вые электроды, плоские группы стержневых элект­родов

15

Неармированньге блоки прямо­

Пластинчатые борта-элек­

Угольного сечения

Троды или перегородки-элек­троды в кассетных формах

30

Повышение температуры изотермического прогрева позволя­ет значительно сократить продолжительность тепловой обработ­ки и расход электроэнергии, однако, в зависимости от модуля по­верхности изделий и вида цемента нормами установлены пре­дельно допустимые температуры изотермического прогрева (табл. 10).

Продолжительность изотермического прогрева для получе­ния заданной прочности бетона определяется расчетом, исходя из принятых величин скорости разогрева и температуры изотер­мического прогрева [13].

Температуры изотермического прогрева бетона

Температура (град) При модуле поверхности изделия

Вид цемента

До 10

10-15

15—20

Шлакопортландцемент Марки 300— 500 ..

80

65

50

Пуццолановый портландцемент марки 300—400 ........................................................

80

60

45

Портландцемент марки 300—400 .

70

50

40

То же, 500—600....................................

60

40

35

Устанавливается средняя температура бетона за период ра­зогрева

Л.___________ и 1 б

£ср. разогр. — ^ *

Где / и и — температура изотермического прогрева и темпера­тура бетона перед прогревом, Град.

Продолжительность подъема температуры

Т= -±-^~ , Г

Где Г — скорость подъема температуры, Град/ч.

Рис. 63. Интенсивность нарастания проч­ности бетона на портландцементе при электропрогреве.

По графику соответственно примененному цементу опреде­ляют нарастание прочности бетона за время разогрева при уста­новленных значени­ях и Т (рис. 63).

Остальную часть прочности до задан­ной величины бетон приобретает в пери­од изотермического прогрева, длитель­ность которого оп­ределяется по кри­вой нарастания прочности, соответ­ствующей принятой температуре изотер­мического прогрева.

Полученная расче­том продолжитель­ность изотермичес­кого прогрева обеспечивает заданную прочность бетона без уче­та его дополнительного твердения в период остывания.

Продолжительность изотермического прогрева обычно при­нимают ДЛЯ получения бетоном 50% ОТ 1^28, при этом средняя продолжительность прогрева бетона на портландцементе колеб­лется от 8 до 12 ч.

Остывание бетона после прогрева должно протекать со сни­жением температуры на 5—10° в час в зависимости от величины модуля поверхности изделия. Остывание наиболее быстро про­текает в первые часы после выключения тока и тем интенсивнее, чем выше температура изотермического прогрева.

Рис. 64. Схема подключения электро­дов для прогрева колонн: А — стержневыми электродами; Б — струнны­ми электродами; 1 — софитные линни; 2 — стержневые электроды; 3 — струйные элек­троды; 4 — металлическая бортовая форма.

К специальному оборудованию для электро­прогрева сборных изделий относятся понизительные трансфор­маторы, распредели­тельные шиты и разво­дящие устройства.

Применяются пре­имущественно специ­альные трансформато­ры трехфазного тока (типа ТМ-75/6 мощ­ностью 50 Кет и др.), дающие на низкой сто­роне напряжения 50, 61, 87, 106 В. Каждый трансформатор смон­тирован в блоке с рас­пределительным щи­том, установленным в шкафу из листовой стали. Можно приме­нять также однофаз­ные трансформаторы типа ТБ-20 или сва­рочные типа СТЭ-24, которые при трехфаз­ном токе группируют­ся по 3 и 6 штук. Сва­рочные трансформато­ры не приспособлены к длительной нагрузке, поэтому они пере­греваются, и мощность их можно использовать только на 70— 80% номинальной. От щита трансформатора шинами, кабелями и проводами (в зависимости от мощности трансформатора) на­пряжение подают на промежуточные распределительные щиты, клеммные щитки или группы форм (рис. 64).

Контроль и управление электропрогревом легко могут быть автоматизированы. Помимо сокращения трудовых затрат, при­менение автоматики повышает точность контроля прогрева, со­кращает расход электроэнергии и времени на электропрогрев.

Измерение температуры бетона при электропрогреве произ­водят техническими термометрами или автоматически посред­ством термометров сопротивления и самопишущих приборов.

Определение прочности бетона посредством контрольных ку­бов при электропрогреве неприменимо, так как нельзя обеспе­чить одинаковые режимы твердения образцов и изделий. Поэто­му для определения прочности изделий при электропрогреве следует применять способы, основанные на испытании непосред­ственно бетона изделия, например, физические или ударные.

Наиболее простым и достаточно надежным способом обеспе­чения заданной прочности является контроль соблюдения темпе­ратурного режима прогрева. Такой способ контроля принят на всех заводах и полигонах, на которых применяется электро­прогрев сборных конструкций.

Во избежание больших теплопотерь прогреваемые изделия необходимо утеплять, что обеспечивает более равномерное рас­пределение температуры и повышает качество бетона. Чтобы воспрепятствовать потере влаги, открытая, поверхность изделия защищается водонепроницаемым укрытием, например, полиа­мидной пленкой или листами толя, пергамина и др.

При электропрогреве сборных железобетонных изделий необ­ходимо строгое соблюдение требований техники безопасности в соответствии с «Правилами техники безопасности при эксплуата­ции электротехнических установок промышленных предприя­тий». К производству работ по электропрогреву допускаются ли­ца, прошедшие специальную подготовку.

Прогрев бетона электроприборами. Прогрев бето­на, осуществляемый посредством внешних источников тепла, ко­Торое Передается бетону через промежуточную среду (воздух, термоактивный слой, металлические стенки формы) или непо­средственно (лучеиспусканием), менее эффективен, чем элект­родный прогрев, и применяется значительно реже.

Прогрев бетона электронагревателями получил некоторое применение в производстве железобетонных изделий на полигонах. Электронагреватель отражательного типа пред­ставляет собой параболический деревянный короб, внутри утеп­ленный и обитый жестью. В коробе по всей его длине устанав­ливается одна или несколько нагревательных спиралей. На поверхность изделия устанавливают один или несколько нагре­вателей. Температура бетона регулируется отключением части спиралей или изменением подводимого напряжения.

При изготовлении коллекторных железобетонных колец на полигонах неоднократно применялись круглые электрические нагреватели, устанавливаемые внутрь каждого распалубленного кольца. Такой электронагреватель представляет собой отрезок асбестоцементной трубы, на которую навиваются 3 спирали из нихромовой проволоки диаметром 0,8 Мм. Общая длина спира­лей 15 М, мощность 2,8 Кет. Напряжение подводят от понизи­тельного трансформатора. Сверху изделия закрывают деревян­ными щитами и утепляют.

При прогреве бетона под термоактивным слоем опилок, окружающим стенки формы или покры­вающим поверхность изделия, электроэнергия преобразуется, в тепло, нагревающее бетон. Стенки термоформ выполняются из дерева и делаются двойными с зазором в 100—150 Мм, который засыпается слоем опилок с уплотнением. Для обеспечения необ­ходимой электропроводности опилки увлажняются 3—5%-ным раствором поваренной соли. В слое опилок размещают электро­ды из круглой или полосовой стали. Тепло от термоактивного слоя через внутреннюю стенку формы передается изделию.

При изготовлении изделий на бойках или площадках термо­активный слой располагается сверху. Изделия засыпают слоем опилок толщиной 50—60 Мм, затем укладывают электроды из круглой или полосовой стали, а поверх электродов — второй слой опилок толщиной 100—120 Мм. Расстояния между элект­родами принимают в зависимости от подводимого напряжения. Смежные электроды подключают к разным фазам электросети, температуру в термоактивном слое поддерживают на уровне 80—90°.

Прогрев бетона инфракрасными лучами более эффективен по сравнению с другими способами внешнего обо­грева бетона. Инфракрасные излучения представляют собой электромагнитные колебания с различной длиной волны (от 0,76 до 6 Мк). Они излучаются внешними электронами атомов в ре­зультате вращательных и колебательных движений молекул, вызванных нагреванием источника излучения.

При инфракрасном облучении бетона обеспечивается непо­средственная передача тепловой энергии от источника излучения нагреваемому изделию. Это обусловливает быстрый подъем тем­пературы нагреваемого изделия и малый расход тепла на еди­ницу продукции.

Источниками (генераторами) инфракрасного излучения явля­ются специальные лампы накаливания типа ЗсЗ напряжением 127 и 220 В, мощностью 0,25 и 0,5 Кв, т, а также плоские и круг­лые металлические излучатели с огнеупорным изолирующим по­крытием и нагревающими спиралями из нихромовой проволоки. Светоотдача лампы инфракрасного облучения типа ЗсЗ состав­ляет примерно 7З светоотдачи обычной осветительной лампы, так что 80—90% подводимой электроэнергии преобразуется в энергию излучения. Тепловой поток лампы ЗсЗ неравномерен, интенсивность его изменяется в зависимости от расстояния от лампы до изделия и расстояния от центра лампы по горизон­тали.

В производственных условиях прогрев инфракрасными луча­ми применялся на ряде заводов сборного железобетона. В ре­зультате накопленного опыта определились основные параметры тепловой обработки бетона. После предварительного выдержи­вания в течение 2—3 Ч (для портландцемента) изделия по­даются в камеру для прогрева. Подъем температуры бетона для изделий толщиной до 150 Мм производят за 1—2 Ч, изотермиче­ский прогрев изделий при температуре 70—90° продолжается до 6 Ч. Таким образом, продолжительность тепловой обработки по сравнению с паропрогревом несколько сокращается.

Добавка в бетонную смесь химических ускорителей тверде­ния, как и при других способах тепловой обработки, ускоряет п

msd.com.ua

Электропрогрев смеси в конструкциях

Категория: Бетонные работы

Электропрогрев смеси в конструкциях

Способ электропрогрева бетона в конструкциях основан на использовании выделяемой теплоты при прохождении через него электрического тока. Для подведения напряжения используют электроды различной конструкции и формы. В зависимости от расположения электродов прогрев подразделяют на сквозной и периферийный. При сквозном прогреве электроды располагают по всему сечению, а при периферийном — по наружной поверхности конструкций. Во избежание отложения солей на электродах и прилегающей зоне бетона постоянный ток использовать запрещается.

Для сквозного прогрева колонн, балок, стен и других конструкций, возводимых в деревянной опалубке, применяют стержневые электроды, которые изготовляют из отрезков арматурной стали диаметром до 6 мм с заостренным концом. Для установки электродов высверливают отверстия в одном из щитов опалубки таким образом, чтобы электроды не соприкасались с арматурой каркаса. Затем вставляют электрод и ударом молотка фиксируют его в противоположном щите. Расстояние между электродами по горизонтали и вертикали принимают по расчету. Затем осуществляют их коммутацию.

Рис. 1. Электроды для прогрева бетона: а — стержневые электроды, б — плавающие рамочные, в — нашивные пластинчатые, г — плавающие пластинчатые, д — струнные

Рис. 2. Схема прогрева бетона с использованием в качестве электродов металлических щитов опалубки (а) и арматуры (б): 1 — арматурный каркас, 2 — металлический щит опалубки, 3 — деревянный брус

Для периферийного прогрева при слабом армировании и когда исключен контакт с арматурой применяют плавающие электроды в виде замкнутой петли. При прогреве плоских конструкций (например, подготовка под полы, дорожные покрытия, ребристые плиты) применяют плавающие пластинчатые электроды.

В качестве плавающих электродов применяют полосовую сталь толщиной 3…5, шириной 30…50 мм. Расстояние между ними определяют расчетом. Электроды должны контактировать с бетоном и могут быть несколько утоплены в него. Между ними и бетоном не должно быть зазора. Для этого их нагружают токонепроводящими материалами (досками, кирпичами), сами электроды должны быть без искривлений и перегибов.

Нашивные электроды, так же как и плавающие, относятся к элементам периферийного прогрева. Их изготовляют из круглой арматурной стали или металлических пластин толщиной 2…3 мм. Электроды нашивают на щиты опалубки для ее установки, а концы загибают под углом 90° и выводят наружу. После установки опалубки производят коммутацию электродов. Необходимо помнить, что электроды не должны иметь контакта с арматурой конструкции во избежание короткого замыкания. Поэтому при установке арматурных каркасов используют пластмассовые прокладки и фиксаторы, которые обеспечивают заданную толщину защитного слоя и предотвращают контакт с электродами.

При изготовлении длинномерных конструкций (колонн, ригелей, балок, свай) используют струнные электроды. Выполняют их из гладкой арматурной стали диаметром 4…6 мм. Располагают в центральной части сечения конструкции. Концы электродов отгибают под углом 90° и выводят через отверстия в опалубке для подключения коммутирующих проводов.

При периферийном прогреве массивных конструкций, а также элементов зданий малой массивности (стен, резервуаров, ленточных фундаментов) в качестве электродов используют металлические щиты опалубки и арматуру конструкции. В первом случае используют однофазный ток: первую фазу подключают к щитам опалубки, а нулевую — к арматурному каркасу. Во втором случае арматурный каркас не подключают к сети, а каждый элемент опалубки присоединяют к одной из трех фаз. Изоляторами между щитами опалубки служат деревянные брусья.

Пример электропрогрева бетона колонны с использованием Щитов металлической опалубки в качестве электродов приведен на рис. 3. Между опалубочными щитами 2 устанавливают диэлектрические прокладки. Напряжение от трансформатора 5 через кабели 4 передаются щитам опалубки соответственно первого, второго и третьего ярусов (при трехфазном токе). Мощность трансформатора подбирается таким образом, чтобы обеспечить прогрев одновременно 6…9 колонн.

Однородность температуры поля зависит от схемы расположения электродов и расстояния между ними. Чем ближе друг к другу электроды и чем сильнее армирование конструкции, тем больше будут температурные перепады в твердеющем бетоне, в результате чего режим твердения будет неоднородным и качество бетона ухудшится. Поэтому в каждом конкретном случае рассчитывают схему расположения электродов с учетом степени армирования конструкции.

Рис. 3. Электропрогрев бетона колонны с помощью щитов опалубки: 1 — арматурный каркас, 2 — щиты опалубки, 3 — диэлектрические прокладки, 4 — кабели, 5 — трансформатор

При напряжении на электродах 50…60 В расстояние между электродами и арматурой должно быть не менее 25 мм, а при 70…85 В — не менее 40 мм.

Стержневые электроды применяют, как правило, в виде плоских групп, которые подключают к одной фазе. При большой длине конструкций вместо одного электрода устанавливают два или три по длине.

Допустимую длину полосового, стержневого или струнного электродов принимают путем расчета минимальной потери напряжения по его длине.

Для получения высокого качества железобетона строго соблюдают температурный режим прогрева, который разделяют на три стадии:1. Подъем температуры бетона. 2. Изотермический прогрев. На этой стадии в бетоне поддерживают заданную температуру. Продолжительность стадии зависит от вида конструкции (прогревают до получения необходимой прочности бетона). Чаще всего на стадии изотермического прогрева достигают критическую прочность бетона.3. Остывание конструкций. При остывании до 0° С бетон продолжает набирать прочность, что особенно важно при бетонировании массивных конструкций.

Для конструкций с Мп=6…9 применяют режим, при котором к моменту остывания бетон должен набрать прочность не менее критической. Для конструкций с М„=9…15 режим такой же, но в конце изотермического прогрева бетон должен набрать не менее 50% прочности. Этим обстоятельством определяется время изотермического прогрева. При изготовлении предварительно напряженных конструкций к моменту окончания изотермического прогрева прочность бетона должна быть не менее 80%.

Нарушение технологического режима электропрогрева может привести к пережогу бетона в результате перегрева бетонной смеси выше 100° С, недостаточному набору прочности, образованию трещин в результате неоднородности температурного поля.

Температура разогрева бетона зависит от конструкции и вида цемента.

Максимальную температуру прогрева более массивных конструкций назначают из условия получения равномерного температурного поля и исключения в них высоких термонапряжений.

Необходимую температуру прогрева бетона получают измерением напряжения, периодическим отключением и включением всего прогрева или части электродов.

Скорость остывания бетона также регулируют.

Если скорость остывания превысит допустимую, в бетонной смеси возникнут температурные напряжения, способные разрушить структуру бетона или образовать в нем трещины. Регулируют скорость остывания путем правильного подбора теплоизоляции опалубки.

При электропрогреве бетонных конструкций с помощью контрольно-измерительных приборов постоянно контролируют напряжение, силу тока и температуру бетона. В первые 3 ч прогрева температуру измеряют каждый час, а затем — через 2…3 ч.

Перед началом бетонирования проверяют правильность установки электродов и их коммутацию, качество утепления опалубки, определяют надежность контактов электродов с токоподводя-щими проводами.

При электропрогреве необходимо тщательно выполнять требования электробезопасности и охраны труда.

Бетонные работы - Электропрогрев смеси в конструкциях

gardenweb.ru