Испытание бетона на прочность разрушающими и неразрушающими методами. Испытание бетона


Испытание бетона на прочность класса В20 по ГОСТу: методы

Испытание прочности бетона является обязательным мероприятием при осуществлении капитального строительства. Выполняется оно для максимально точного и объективного установления механических характеристик материала, что позволяет прогнозировать его поведение  при воздействии различных нагрузок.

Важность подобных испытаний и правильной интерпретации их результатов сложно переоценить. Вот почему специалисты рекомендуют выполнять такие проверки в любом случае, вне зависимости от назначения конструкции и масштаба строительства.

Узнать, какую нагрузку выдержит конструкция, можно несколькими способами

Узнать, какую нагрузку выдержит конструкция, можно несколькими способами

Факторы, влияющие на прочность

Прежде чем анализировать, какие  испытания бетона на прочность по ГОСТу нужно проводить, стоит разобраться с показателями, которые определяют механические характеристики материала.

Варианты структуры

Варианты структуры

Прочность бетона – это его способность воспринимать нагрузки и усилия (растяжение, сжатие, изгиб, сдвиг) и оказывать им сопротивления за счет внутреннего напряжения.

При этом материал не должен разрушаться в том или ином виде (расколы, трещины, расслоение).

  • Эта характеристика в первую очередь обеспечивается составом материала. Ключевую роль в формировании прочности играет марка цемента – чем она выше, тем большую нагрузку может выдержать конструкция.

Обратите внимание! Цена низкомарочных составов будет существенно меньше, чем высокомарочных, потому часто возникает желание сэкономить. Иногда сокращение расходов действительно является уместным как с финансовой, так и с инженерной точки зрения, но чаще всего это только снижает эксплуатационные качества и сокращает срок службы конструкции.

  • Кроме собственно цемента, песка и наполнителя важную роль играют модификаторы. Эти вещества вносятся в раствор в относительно небольших объемах, но существенно изменяют его свойства, увеличивая текучесть, прочность, ускоряя застывание и т.д.
  • Для более эффективного и равномерного распределения нагрузок в бетоне проводится его армирование – закладка металлической проволоки и прутьев в толщу материала. Эта методика укрепления позволяет справиться с низкой эластичностью.
Тип и конфигурация арматуры также влияют на прочность конструкции в целом

Тип и конфигурация арматуры также влияют на прочность конструкции в целом

  • Наконец, важными являются также условия заливки и застывания цементного раствора. Все дело в том, что для набора прочности необходимо уплотнение материала для удаления воздуха и гидратация цемента – реакция его гранул с водой. Скорость этого процесса зависит от температуры, и потому в зиме время бетон нужно либо обеспечить качественной теплоизоляцией, либо дополнительно прогревать.
  • Другой аспект процесса набора прочности – испарение жидкости. Если раствор высохнет быстрее, чем весь цемент прореагирует с водой, то плотность бетонного монолита будет неоднородной. Чтобы избежать этого, специалисты искусственно замедляют высыхание поверхностных слоев материала, укрывая их полиэтиленом или мешковиной и дополнительно смачивая.
Чтобы жидкость не испарялась слишком быстро, раствор накрываем пленкой

Чтобы жидкость не испарялась слишком быстро, раствор накрываем пленкой

В результате мы видим, что прочность  — это интегральный показатель, который обеспечивается взаимодействием многих факторов. С помощью расчетов можно только приблизительно определить, насколько устойчив будет залитый бетон, потому в сложных ситуациях используются методики инструментального контроля.

Методики  контроля

Обзор методов

На сегодняшний день прочность определяется по нескольким методам.

Среди них:

  • Исследование стандартных образцов. Для этого из раствора с известными пропорциями изготавливаются кубические или цилиндрические фрагменты, которые просушиваются в формах в течение 28 суток. Затем образцы испытываются в специальном прессе, после чего делается вывод об их прочностных характеристиках.
Бетонный цилиндр, разрушенный под прессом

Бетонный цилиндр, разрушенный под прессом

  • Исследование кернов. Из застывшего бетона вырубается (в последнее время все чаще применяется бурение с использованием алмазных коронок) монолит, который затем подвергается лабораторным тестам. Как и в предыдущем случае, наиболее распространенным является разрушающее испытание под прессом.

Обратите внимание! Недостатком данной группы методов является сложность извлечения образца и высокая стоимость процедуры. Кроме того, при неправильном выборе точки для отбора проб существует риск снижения несущих характеристик конструкции в целом.

  • Неразрушающий контроль. Эта группа методов отличается от двух предыдущих тем, что измеряется не прочность бетона сама по себе, а другие показатели, которые напрямую связаны с механической устойчивостью. Методики неразрушающего контроля являются менее трудоемкими, но и точность у них будет несколько ниже. Впрочем, для решения большинства инженерных задач ее вполне хватает.

Все эти методы могут применяться как в массовом, так и в частном строительстве. Порядок проведения контрольных мероприятий регулируется ГОСТ Р — 53231-2008 «Контроль и оценка прочности бетонов» и рядом других нормативов.

Методы неразрушающего измерения позволяют работать с уже возведенными сооружениями

Методы неразрушающего измерения позволяют работать с уже возведенными сооружениями

Изготовление и обработка образцов

Наиболее распространенным методом является испытание кубиков бетона на прочность.

Для этого выполняют такую подготовительную работу:

Отлитые образцы

Отлитые образцы

  • Из партии раствора отбирают несколько проб бетона, объем которых будет достаточен для изготовления серии образцов нужного размера.

Обратите внимание! При отборе материала его не следует дополнительно перемешивать, удалять или вносить наполнитель и т.д.

  • Путем заливки в стандартизированные формы изготавливаются образцы, конфигурация и габариты которых соответствуют типу исследования. Как правило, заполнение форм осуществляется не позднее, чем через 20-30 минут после отбора.

Нормативные документы допускают применение таких контрольных проб:

Вид исследования Форма образца Линейные размеры, мм
Контроль прочности на сжатие или растяжение Кубическая От 100х100 до 300х300
Цилиндрическая Диаметр от 100 до 300, высота не меньше величины диаметра
Контроль осевого растяжения Призматическая От 100х100х400 до 300х300х1200
Цилиндрическая Диаметр от 100 до 300, высота не меньше двух величин диаметра
Контроль прочности растяжения при изгибе Призматическая От 100х100х400 до 300х300х1200
  • Также допускается выпиливание монолитов из застывшего бетона или выбуривание их с использованием алмазных коронок.
  • Извлечение осуществляется без предварительного увлажнения материала, по схемам, утвержденным ГОСТом (приводятся в качестве иллюстраций в статье).
Схемы вырубки монолитов

Схемы вырубки монолитов

  • Инструкция допускает к испытанию образцы, не имеющие видимых дефектов – сколов, трещин, раковин диаметром более 10 мм и т.д.

Обратите внимание! Наличие наплывов раствора на образцах, полученных путем отливки в форму, допускается, однако перед проведением контроля они должны быть удалены с помощью абразива.

Разрушающий контроль

Лаборатория испытания бетона на прочность разные формы контроля выполняет по разным технологическим схемам.

Контроль прочности на сжатие проводится так:

  • Образец (куб или цилиндр) устанавливаем на нижнюю плиту пресса.
  • Верхняя плита постепенно опускается, создавая нагрузку на бетон. Скорость нагружения принимают равной около 0,5 -0,6МПа/с.
  • Образец нагружается до тех пор, пока не разрушится. При этом схема раскола должна соответствовать указанной в нормативных документах. В противном случае результат не учитывается, о чем делается соответствующая запись в журнале (также информация может заноситься и в протокол испытания или иной документ).

Обратите внимание! Прочность на растяжение при раскалывании испытывают по аналогичной схеме, с той лишь разницей, что давление осуществляется с использованием специальной заостренной насадки.

Протокол испытаний бетона на прочность класса В20:  образец оформления

Протокол испытаний бетона на прочность класса В20:  образец оформления

Контроль растяжения на изгибе выполняется иначе:

  • Вытянутую призму укладываем в горизонтальном положении в испытательную машину.
  • На центральную часть призмы оказываем давление со скоростью нарастания нагрузки около 0,5 МПа/с.
  • Для учета образца в ходе контроля необходимо, чтобы линия разрушения прошла в средней части пробы, причем разлом был наклонен не более чем на 150 от вертикальной оси.
Воздействие на призму при изгибающей нагрузке

Воздействие на призму при изгибающей нагрузке

На основании полученных данных высчитывается прочность бетона. Достаточная точность определения согласно ГОСТу составляет 0,1МПа.

В принципе, при наличии доступа к прессу с прибором для контроля нагрузки оценить прочность образца можно и своими руками.

К примеру, устойчивость на сжатие вычисляется по следующей формуле:

R = (F/A) * K, где

  • R – искомая величина прочности.
  • F – разрушающее усилие в Ньютонах.
  • A – площадь образца, мм2.
  • K – коэффициент поправки для учета влажности пористых и ячеистых материалов.

Неразрушающий контроль

Основные методы

Перечисленные выше методики являются достаточно точными, однако для них характерен ряд недостатков. И главное – они не позволяют проверить прочность материала в целой конструкции, что иногда бывает необходимо. Для этой цели обычно применяется так называемый неразрушающий контроль.

Использование склерометра

Использование склерометра

Как мы отмечали выше, при этом замеряется не сама прочность материала, а косвенные показатели.

К ним относят:

  • Измерение параметров отскока твердых предметов от поверхности бетона. Данная методика достаточно распространена и используется в различных модификациях склерометров (пример на изображении выше).
  • Измерение параметров деформации бетона в месте удара (чаще всего удар наносится стальным шариком фиксированного диаметра и массы). Для реализации подобной методики применяется так называемый «молоток Кашкарова».
Молоток Кашкарова

Молоток Кашкарова

  • Учет энергии импульса при воздействии бойка специального прибора на поверхность бетона.
  • Замер скорости распространения ультразвука в толще материала. Эта методика является оптимальной для выявления скрытых дефектов во внутренних слоях бетона.

Принимая во внимание косвенный характер данных методов, специалисты рекомендуют использовать их в комплексе, согласуя результаты для получения единой картины.

Метод отрыва

Отдельную группу методик составляют так называемые прямые способы неразрушающего контроля. К ним относятся проверки на отрыв и на скол. Они показывают удовлетворительные результаты, потому на их описании стоит остановиться отдельно.

Отрывной контроль проводится так:

  • На поверхность наклеивается стальной диск, соединенный с механизмом, обеспечивающим дозированное отрывающее усилие.
  • Для приклеивания согласно требованиям ГОСТ используются составы ЭД16 или ЭД20.
  • После полимеризации состава к диску прикладывается усилие до тех пор, пока фрагмент бетона не будет оторван. Параметры воздействия замеряются, на основании чего делается вывод о механических характеристиках раствора.
Контроль методом отрыва

Контроль методом отрыва

Обратите внимание! В РФ данная методика применяется редко, поскольку климатические условия на большей части территории страны не обеспечивают полноценную полимеризацию клея. В то же время ее эффективность достаточна для того, чтобы использовать отрывной контроль в качестве ориентировочного или вспомогательного.

Метод скалывания ребра

Одной из модификаций отрывного контроля является методика скалывания ребра:

  • На внешний угол конструкции устанавливается специальный инструмент, рабочая часть которого напоминает струбцину. Подвижные элементы зажимаются винтом до тех пор, пока инструмент не будет надежно зафиксирован.
  • Затем через захват подается усилие, которое приводит к скалыванию ребра в месте контакта со струбциной частью. По величине усилия делается вывод о прочности бетона.
  • Недостаток подобной методики очевиден: контролировать характеристики можно далеко не везде. Именно поэтому несколько лет назад на рынок была выпущена модификация такого устройства, которая может использоваться на ровных участках. При этом для фиксации инструмента применяется дюбель.
Фото струбцины для скалывания бетонного ребра

Фото струбцины для скалывания бетонного ребра

Обратите внимание! Для работы подобного устройства необходима достаточно мощная ударная дрель или перфоратор, что существенно усложняет процесс контроля.

Вывод

Описанные выше методы испытания бетона на прочность при условии правильной реализации демонстрируют достаточную эффективность. Их использование (как мы уже отмечали, для наилучших результатов оно должно быть комплексным) позволяет оценить свойства конструкции, спрогнозировать ее реакцию на различные нагрузки и при необходимости – спланировать мероприятия по устранению недостатков.

Конечно, на практике с этим могут справиться только профессионалы, однако и новичок, внимательно изучивший видео в этой статье, сможет выполнить хотя бы приблизительную оценку.

masterabetona.ru

методы определения прочности бетонных конструкций

 

Бетон является несущим конструкционным материалом зданий и сооружений. Поэтому его технические характеристики должны соответствовать требованиям нормативных документов – ГОСТ и СНиП.  Чтобы проверить соответствие материала заявленной марке проводят испытание бетона на: сжатие, изгиб, растяжение, морозостойкость и ряд других показателей, от которых зависит долговечность и несущая способность бетонных изделий, конструкций и зданий.

СодержаниеСвернуть

испытание бетона

По результатам проведенных испытаний составляется специальный документ, так называемый «Паспорт качества материала», официальное название «Документ о качестве бетонной смеси», созданный по результатам лабораторных испытаний бетона на предприятии изготовителе.  Это основной официальный документ, которым руководствуются строительные организации при возведении ответственных и специальных бетонных конструкций.

Способы испытания бетона

Бетон как строительный материал подвергают испытаниям как в затвердевшем, так и в незатвердевшем состоянии. При этом цели испытаний разные. В первом случае определяются прочностные и другие эксплуатационные характеристики твердого материала, а во втором случае его технологические показатели: удобоукладываемость, уплотняемость, пластичность и наличие воздуха.

Кроме того различают неразрушающие и разрушающие способы испытания. Рассмотрим виды испытаний бетонного раствора по «ходу» его применения – до схватывания и набора прочности и после схватывания и набора марочной прочности.

Испытание бетона ГОСТ 10181.1-81

Проверка показателей бетона в соответствии с требованиями данного нормативного документа производится лабораториями бетонных заводов сразу после приготовления товарного раствора.

  • Осадка конуса. С помощью этого способа определяют неоднородность и консистенцию материала. Эти показатели влияют на удобоукладываемость бетона. Суть метода заключается в заполнении металлического конуса проверяемым бетоном, измерение линейных показателей после снятия оболочки (конуса) и сравнения изменения габаритов полученной «бетонной паски» с табличными значениями.
  • Испытание на уплотнение. Данный способ позволяет установить коэффициент уплотнения конкретной партии строительного материала. Для определения данной характеристики используется следующее технологическое оборудование для испытания бетона – аппарат, состоящий из двух мерных емкостей с воронками. В первую воронку заливают проверяемую субстанцию. Воронка имеет клапан, через который раствор стекает во вторую воронку в емкость меньшего объема. Далее проверяемый материал попадает в специальную цилиндрическую форму. Плотность и коэффициент уплотнения раствора находящегося в цилиндрической форме вычисляется математическими способом.
  • Испытание на пластичность и изменение формы. В этом случае проверяемый материал заливают в испытательный конус определенных размеров, который устанавливают на специальный опорный столик. Столик имеет возможность при встряхивании опускаться вниз на несколько сантиметров. Далее форму осторожно снимают, а столик опускают. Бетон растекается по его поверхности. Проведя линейные измерения среднего диаметра «растекшийся» формы бетона определяют показатели пластичности проверяемого материала.
  • Проверка наличия воздушных пустот в бетонном растворе. Используется два метода. Первый метод – измерение веса образца бетона до и после встряхивания с перемешиванием в пикнометре. Соответственно для оценки наличия воздуха этим способом применяются весьма точные приборы способные определить незначительное отклонение массы. Второй метод – это метод давления. В этом случае применяют специальные воздухомеры, которые показывают содержание воздушных пустот в теле твердого бетона.

Для частных застройщиков, которые имеют дело с бетоном в первый, зачастую в последний раз в жизни, можно порекомендовать следующий контроль качества (испытания) бетона «эмпирическим» методом:

  • Цвет. Качественный бетон должен иметь серо-зеленоватую окраску. При этом чем «зеленее» поставленный бетон, тем лучше его качество. Желтый оттенок бетона, является признаком его недостойного качества.
  • На поверхности уложенного бетона должно появиться так называемое «цементное молочко». Чем гуще данный материал, тем выше качеством бетона.
  • Не должно быть фракций наполнителя непокрытых растром цемента и песка.
  • После полного твердения бетона стальной молоток должен со звоном отскакивать от поверхности, оставляя неглубокую вмятину.

Методы испытаний застывшего бетона

Основным типом испытаний бетона, который применяют для всех типов конструкций, является испытания бетона на прочность при сжатии. Этот показатель указывается в маркировке бетона, что характеризует его важность.

Существует два независимых способа испытания на прочность. Это лабораторные испытания бетона на прочность перед отправкой готового материала на объект и проверка прочности конкретного застывшего материала непосредственно на строительной площадке. При этом для особо ответственных сооружений по результатам испытаний составляется протокол испытания бетона на прочность, в котором указываются полученные данные и дата испытания.

Испытание бетона

Рассмотрим оба способа подробнее. Порядок испытания бетона на прочность лабораторными способами регламентирован требованиями нормативного документа – действующий стандарт ГОСТ 10180-2012. Суть метода проста, и заключается в изготовлении кубических или цилиндрических образцов определенного размера.

Размеры кубиков для испытания бетона также определены требованиями указанного ГОСТ и составляют бетонные элементы с длиной ребра: 100, 150, 200, 250 и 300 миллиметров. Цилиндрические образцы для проверки на прочность могут иметь диаметр: 100, 150, 200, 250 и 300 миллиметров.

После заливки образцов и выдержки их в течение определенного времени, с помощью социального пресса осуществляется разрушение образца. При этом фиксируется математическая величина разрушающей силы, которая и характеризует прочность бетона на сжатие. Это очень точный, но не всегда приемлемый метод.

Испытание бетона

Строительство не может ждать пока образцы бетона схватятся и наберут марочную прочность. Поэтому строительные компании используют в своей практике эмпирические методы испытания бетона на прочность. Данные методы подразделяются на две основные группы: частично разрушающие бетон и неразрушающие бетон.

Технология частичного разрушения является самым достоверным методом и согласно требований нормативных документов обязательна при сдаче здания в эксплуатацию. Техническая суть технологии частичного разрушения заключается в клеевой фиксации специального стального диска на поверхности испытуемой конструкции.

Далее с помощью специального устройства диск отрывается вместе с куском бетона. Величина силы отрыва фиксируется специальным прибором – это и есть значение прочности данной бетонной конструкции.

Определение прочности без разрушения бетона

Среди неразрушающих методов определения значения прочности самым популярным считается ультразвуковое испытание бетона. Метод основан на изменении скорости прохождения ультразвуковых волн через толщу материала.

Испытание бетона

Современные приборы для ультразвукового исследования бетона, являются «показывающими», то есть при проведении испытания выдают на дисплей показатель прочности в требуемых единицах. Основной недостаток «ультразвуковой» технологии – существенная погрешность измерений.

  • Испытание бетона на растяжение и изгиб. Технология проверка аналогична технологии испытания образцов бетона на прочность.  Основное отличие проверка на растяжение и изгиб заключается в векторе приложения разрушающей нагрузки. При проверке на прочность образцы «давят» вертикальной нагрузкой, а при проверке на растяжение и изгиб разрушают горизонтальной и «консольной» силой.
  • Испытание бетона на морозостойкость. Морозостойкость бетона измеряется в количестве циклов «замораживания-размораживания», которое способна выдержать конструкция до начала разрушения. Данная величина также относится к основным техническим характеристикам, от которой зависит долговечность сооружения. Технология испытания на морозостойкость предусматривает замораживание оттаивание контрольных образцов в лабораторных условиях, после чего проводится сравнительный анализ потери прочности и соответственное определение величины морозостойкости.

Заключение

Для частного строительства малоэтажных зданий и сооружений важно соблюдать  гостовские пропорции компонентов бетона и цементно-песчаного раствора. А также приобретать цемент у заслуживающих доверия поставщиков.

Математические и практические расчеты прочности бетона показывают, что при малоэтажном строительстве бетонные конструкции имеют значительный запас прочности на сжатие, растяжение и морозостойкость.

 

cementim.ru

Испытание бетона на разных этапах изготовления: полезная информация

Испытание образца

Испытание бетона – основная работа всех строительных лабораторий. Благодаря выработанным десятилетиями и тяжким трудом методам, можно точно определить насколько качественный материал и заранее спроектировать его марку, обладающую всеми необходимыми параметрами. Приоткроем таинство лабораторных работ, выясним их тонкости и суть.

Содержание статьи

Лабораторные испытания рабочего раствора

Лаборатория

Контроль начинается с момента его приготовления.

Обратите внимание! Частота и объем забора проб для дальнейшего тестирования, зависят от типа изготавливаемой конструкции, уплотнения, выдержки, метода забивки, и многих других факторов. Но не реже одного раза при изготовлении одной партии изделий. Технологом и начальником лаборатории устанавливается внутренний регламент и распорядок, в соответствии с которым ведутся заборы.

При производстве преднапряженных ЖБ изделий, обязательно изготовление проб на каждую заливку, чтобы с помощью лабораторного контроля установить время снятия изделия с напряжения.

В зависимости от типа производства и выпускаемых изделий, существуют различные правила отбора:

  • При изготовлении товарного бетона заборы делаются прямо из БСУ во время отгрузки раствора.
  • На заводах при изготовлении сборного ЖБ допускается забор рабочей смеси прямо из смесителя, во время выдачи, или из бадьи.

На заметку: В идеале нужно брать пробы с трех этапов производства . Но иногда, на больших предприятиях, где все рабочие процессы автоматизированы, подобраться к БСУ для забора проб не так−то просто. Поэтому берут пробы из трех средних замесов при раздаче или формовке.

  • При изготовлении монолитного железобетона отбор ведется при укладке смеси. Уже уплотненный материал не даст достоверных результатов, поэтому лучше всего взять раствор со следующего замеса.
Забор проб

Забор проб

Объем отбираемого материала для изготовления контрольных образцов, должен производиться в официально установленных рамках:

  • при изготовлении изделий объемом более чем 2м3, необходимо более трех серий образцов;
  • одна серия образцов для объема, отпускаемого потребителю — при этом не должно быть более 50м3 образцов от одной марки;
  • при изготовлении монолитных конструкций, в зависимости от объема выпускаемых изделий, должно быть не менее одной серии образцов на одно изделие.

Если же материал изготавливается на стройке, производится его отбор в обычное жестяное ведро (или ведра), и везется в лабораторию в срочном порядке — до того момента, как выступит цементное молочко на поверхности. По правилам, конечно, нужно чтобы на объект приезжала мобильная лаборатория — но чего нет, того нет. Особенно в небольших городках.

Когда отборы проб были произведены, можно приступить к первым контрольным мероприятиям.

Определение удобоукладываемости

Подача смеси в опалубку

Не только в лабораториях, но и на строительных площадках проводят контроль на удобоукладываемость и жесткость. Полученные данные дают цифровые значения в сантиметрах, которые можно классифицировать и присвоить приготовленному материалу марку по подвижности.

Процесс проведения не сложен и не требуется обучение на лаборанта. Нужно только иметь определенные знания, которыми мы и поделимся.

Конус для определения

Чтобы это произвести, согласно ГОСТ 10181−2014, потребуется:

  • Специальная конусная форма с упорами. Можно изготовить ее самостоятельно, руководствуясь точными рекомендациями стандарта. Но можно пойти и более простым путем, и приобрести ее в специализированных магазинах. Цена на нее не так уж и высока.
  • Две стальные, желательно поверенные линейки.
  • Кельма.
  • Воронка строительная.
  • Металлический стержень.

Этапы проведения работ:

Этапы проведения мероприятий

  • Этап 1. В конус накладывают с помощью воронки смесь до полного его заполнения, и хорошенько штыкуют 25 раз по всей длине и площади нижнего слоя.
  • Этап 2. Убирают воронку и аккуратно линейкой снимают избыток смеси.
  • Этап 3. Аккуратным движением поднимают конус строго по горизонтали, и ставят рядом с материалом.
  • Этап 4. Бетон под весом собственной тяжести начинает оседать. Этому процессу не нужно препятствовать. И как только он закончится, продолжить мероприятие.
  • Этап 5. На верхнюю конуса укладывают линейку так, чтобы можно было измерить разницу в высоте между образцом и конусом. Измерения проводят с точностью до миллиметров.
Измерение ОК с помощью линейки

Измерение ОК с помощью линейки

  • Этап 6. Подобный процесс повторяется дважды, и последнее значение берется, как среднее арифметическое между двух. Если же результаты имеют слишком большое расхождение – более 2 см, то мероприятие повторяют с новой пробы.
  • Этап 7. Получившееся значение в сантиметрах – это и есть подвижность смеси.

В зависимости от него, смеси бывают:

  • текучие (литые) – ОК от 21 см;
  • подвижные − ОК 10–16 см;
  • умеренно подвижные − ОК 6–9 см;
  • малоподвижные − ОК 1–5 см;
  • умеренно жесткие, жесткие, повышено жесткие и особо жесткие смеси − ОК 0 см.

Но подвижность имеет свое буквенно−цифровое обозначение П:

  • П1 – 1-4 см;
  • П2 – 5-9 см;
  • П3 –10-15 см;
  • П4 –16-20 см;
  • П5 – 21 см и больше.

Зная эти значения, можно подкорректировать состав, если они не соответствуют проектным — например, увеличить пластичность, добавляя пластификатор.

Формовка образцов

Когда контроль смеси завершен, можно приступать к формовке в стандартные металлические формы размером 10*10 см для того чтобы, провести дальнейшие мероприятия. При этом использование материала, который проходил контроль на удобоукладываемость, для формовки кубиков не берется. Нужна свежая проба.

Гостовские испытания бетонных образцов

Заформованные образцы

Согласно ГОСТ 10180−2012, после выдержки бетонных образцов в формах около суток с момента формовки, можно производить разопалубку, и убирать в комнату для дальнейшей выдержки в специальных влажных условиях.

Но это не относится к образцам, отбираемым при формовке преднапряженных изделий. Они выдерживаются в аналогичных условиях, что и продукт – тепловлажностная обработка или естественное твердение.

Чтобы узнать, достиг ли материал нужного процента прочности для снятия с напряжения – это примерно 75% от проектной, нужно по истечении намеченного периода обработки разопалубить три образца и отправить для контроля. Оставшиеся убрать для выдержки на 7 и 28 суток.

Испытание на сжатие

Пресс

Контроль на прочность – основное для определения его качества. По нему решается: можно ли отпускать изделия потребителю, или дать ему еще выстояться. Тестируются образцы с одного забора дважды — в семисуточном и двадцати восьми суточном возрасте.

Внимание! При первом контроле материал должен набрать не менее 70% от проектной прочности. В противном случае, его не отпускают с завода для проведения дальнейших мероприятий.

Оборудование — просто:

  • пресс;
  • поверенные весы;
  • поверенная металлическая линейка.

На сжатие проводятся контрольные мероприятия по ГОСТ 10180−2012 следующим образом:

  • Этап 1. Подготавливаются кубики.
  • Этап 2. Каждый образец взвешивается и измеряется. При большом отклонении в параметрах кубик признается непригодным для контроля.
  • Этап 3. На подготовленный пресс устанавливается образец таким образом, чтобы грани, соприкасаемые с прессом, были ровные и не представляли формовочную сторону. Она начинает разрушаться первой.
Проведение испытания на сжатие

Проведение испытания на сжатие

  • Этап 4. Предельной считается нагрузка, при которой происходит полное разрушение образца. Современные прессы показывают это предельное значение, и сохраняют его в своей памяти.

Протокол

  • Этап 5. После контроля всех образов берется среднее арифметическое значение, и принимается за конечный результат, который вносится в акт. После проведения всех действий, на их основании выдается, который показывает истинное качество выпускаемых изделий и конструкций.

Испытание на растяжение

Проверка растяжения

Реже проводят контроль на подверженность растяжению. Получаемые значения помогают узнать предельную нагрузку на осевое растяжение, которое может выдержать то или иное изделие.

При этом проводится не испытание кубиков, а нагрузке подвергают образцы, изготовленные в виде балочек.

Выглядит это так:

  • Этап 1. Установка шарнирных опор на плите пресса.
  • Этап 2. Образец устанавливается на опоры на расстоянии испытательного пролета от верхней плиты пресса, которая равна трехкратному размеру сечения образца.
  • Этап 3. На призму устанавливают шарнирные опоры, а на них — специальную траверсу, и запускают пресс.

Процесс работ

  • Этап 4. Значение берется среднее от всех образцов, в которых произошло разрушение в средней трети призмы. При испытании образцов размером 200х200х800 мм и 150х150х600 мм, полученную прочность умножают на коэффициент 0,1, а для образцов 100х100х400 мм на 0,95. Получившиеся значения заносят в протокол.

Испытания неразрушающим методом контроля бетонных изделий

Неразрушающий методом

Ультразвуковой контроль относится к неразрушающим методам — а именно, его прочности. Ультразвуковой метод стал доступен с момента изобретения специальных приспособлений, которые позволяют «прослушивать» материал, и выдают точный результат.

При Советах бетон простукивали молоточком Кашкарова, и по определенным характеристикам выясняли, на сколько он качественный. Сегодня это в прошлом, так как велика вероятность человеческого фактора.

Молоток Кашкарова

Молоток Кашкарова

Лаборатория контроля также проводит их с помощью ультразвукового оборудования. Например, в экстренных ситуациях, когда нужно снять с напряжения изделия, а свет отключен, и недоступно исследование кубиков на прессе, или по иным причинам.

Интересуетесь, сколько образцов необходимо для контроля ультразвуковым методом? В идеале – одно изделие, которое нужно «прослушать». Этот процесс ГОСТ за номером 17624, полностью регламентирует.

Согласно стандарту, данный метод неразрушающего контроля проходит следующим образом:

  • Подготавливается поверхность – отчищается от загрязнений.
  • Включается прибор и настраивается на нужный режим. Подобные рекомендации содержит инструкция, прилагаемая к прибору.
  • «Молоточек» прикладывается к бетону (или сам прибор — все зависит от модели) строго перпендикулярно и нажимается. На экране высвечивается значение.

Неразрушающий метод

  • В зависимости от прибора, необходимо производить подобные мероприятия разное количество раз, не превышающее 20. По их результатам прибор выводит среднее значение, которое и заносится в протокол.

Подобному методу подвергают все железобетонные конструкции, уже смонтированные на объекте. Также он считается «страховым» методом на заводах ЖБИ, в случае, если бетон на сжатие в 7−суточном и 28−суточном возрасте показал плохие результаты. После полной выдержки изделие «прослушивают» и решают, что с ним дальше делать – в утиль или на стройку.

Видео в этой статье подробнее расскажет, как проводить подобное испытание.

Как видите, проверка материала – дело ответственное, но не такое сложное, как может казаться. Протоколы и паспорта качества – отражение этих мероприятий и, соответственно, качества бетона. Поэтому не забывайте спрашивать их у продавца, чтобы в дальнейшем избежать нежелательных проблем.

beton-house.com

Самые популярные методы испытания бетона на прочность

На сегодняшний день существует два вида испытаний бетона на прочность: разрушающие (лабораторные) и неразрушающие («полевые»). Рассмотрим каждый из видов испытаний отдельно.

СодержаниеСвернуть

  • Разрушающие методы
  • Неразрушающие методы

metody_issledovaniya_prochnosti_betona

Разрушающие методы

Наиболее часто используют метод «стандартных образцов».  Это один из самых точных методов определения «марочной» прочности бетона. Суть метода следующая – одновременно с заливкой конструкции, изготавливаются образцы бетона кубической или цилиндрической формы.  После затвердевания образца его устанавливают на лабораторный испытательный пресс и нагружают до тех пор, пока он полностью не разрушится. Величина механической нагрузки, в кг/см2 или МПа, при которой произошло разрушение и есть реальная прочность конкретного бетона.

Менее популярный способ – «метод выбуренных кернов». Суть и технология метода аналогичны «стандартным образцам». Разница заключается в том, что разрушению на прессе подвергается образец (керн) высверленный из настоящей бетонной конструкции. Несмотря на свою точность (испытывается не образец, залитый в лабораторных условиях, а сама бетонная конструкция) метод не получил широкого распространения ввиду дороговизны и сложности высверливания кернов, а также из-за опасности разрушения проверяемого изделия.

Неразрушающие методы

  • Пластическая деформация. Позволяет определить прочность бетона в диапазоне 5-50 МПа. При данном методе величину прочности бетона определяют по диаметру отпечатка стального шарика оставшегося после удара шариком о его поверхность. Метод имеет небольшую точность. Поэтому, несмотря на простоту и дешевизну применяется редко;
  • Упругий отскок. Диапазон измеряемой прочности аналогичный методу пластической деформации. Суть метода заключается в измерении параметра обратного отскока специального ударника от поверхности испытываемой конструкции. Основные преимущества – дешевизна и высокая точность измерений;
  • Ударно-импульсный метод. Позволяет определять прочность бетона в широком диапазоне от 50 до 150 МПа. Суть способа заключается в измерении энергии удара специального упругого тела о поверхность бетона. В числе преимуществ: компактность измерительной техники, простота, дешевизна и возможность расчета надежности бетона «на сжатие». Один из самых популярных в России методов измерения прочности бетона;
  • Ультразвуковое исследование. Позволяет проверить не только отдельно взятую поверхность, но и всю конструкцию в целом.
  • Технология «скалывания ребра». Диапазон измеряемых величин от 10 до 70 МПа. При этом методе измеряется усилие, которое необходимо приложить для скалывания ребра бетонной конструкции: балки, сваи, перемычки или колонны. Метод отличается высокой точность, трудоемкостью и невозможностью применения для бетонных конструкций с повреждениями или конструкций имеющих защитный слой до 22 мм;
  • Отрыв со скалыванием. Диапазон измерения от 5 до 100 МПа. Суть – специальный анкер внедренный в толщу бетона воздействует на конструкцию до момента отрыва образца или заданной величины прочности проверяемого изделия. Отличается высокой степенью точности и повышенной трудоемкостью;
  • Отрыв железного диска. Диапазон измерения прочности от 5 до 60 МПа. Позволяет проверять армированный бетон к которому невозможно применить другие методы контроля. Суть технологии заключается в измерении нагрузки, которую следует приложить, чтобы оторвать от поверхности бетона приклеенный стальной диск. Отличается высокой точностью и длительным подготовительным периодом – от 4 до 22 часов.

salecement.ru

Укладка и испытание бетона, как заливать бетон, инструкции.

Заливаем бетонУкладка и испытание бетона, как заливать бетон, инструкции.

В данной статье мы вместе с вами подробно рассмотрим вопросы о том, как укладывать, как заливать бетон, и как испытывать его на прочность.

Как укладывать бетонный раствор?

Бетон – один из самых популярных строительных материалов в мире, использующийся для возведения самых различных конструкций.

 

Объекты из него прочны, но уровень прочности на сжатие будет напрямую зависеть от того, насколько тщательно вы соблюдали технологию укладки. Кроме того, на итоговый результат будет влиять состояние поверхности, на которую укладывается раствор, и температура проведения работ. Последние два момента также можно отнести к технологии укладки. Рассмотрим подробную инструкцию процесса укладывания раствора вручную, что позволит резко снизить конечную стоимость укладки бетона.

Пошаговая инструкция

1. Первым делом подготавливаем поверхность для укладки бетонного раствора. То есть, поверхность нужно очистить от мусора, грязи и пыли. По возможности, она должна быть идеально ровной. Если есть неровности, то выровняйте ее с помощью отбойного молотка или лопаты. Помните о том, что чистой должна быть не только поверхность, но и щебень, который вы используете для приготовления раствора.

2. Когда поверхность будет готова, можно устанавливать на нее опалубку, куда будет заливаться раствор. Опалубка может быть выполнена из железа или из массивной доски. Деревянные опалубки перед укладкой раствора требуют смачивания досок водой. Это позволит влаге из раствора остаться внутри, а не впитываться деревом. Заливка в опалубку из железа не требует предварительного использования воды.

3. Бетонный раствор может укладываться тремя способами: литьем, с уплотнением, методом опорной укладки. Литье – технология, которая применяется при использовании бетонной смеси с суперпластификаторами. Укладка бетона, как правило, производится горизонтальными однонаправленными слоями, причем высота укладки не должна превышать 50 сантиметров. Бетонирование должно проходить непрерывно, то есть, укладка следующего слоя должна проводиться до того, как начнет высыхать предыдущий слой. При проведении крупномасштабных строительных работ перерывы в закладке практически неизбежны, вследствие чего рабочие швы делаются в тех местах, которые не влияют на прочность бетонной конструкции.

4. Если вы хотите уплотнить бетонный слой, используйте такое оборудование, как электрическую виброрейку. Колебания этого прибора придают материалу большую текучесть, что ликвидирует возможные расслоения частями. Как результат, конструкция становится более прочной и крепкой. Можно, конечно, использовать и молоток, но это слишком трудоемко.

5. После укладки бетонный раствор нужно накрыть смоченной водой плотной тканью. Впоследствии, ткань нужно будет поддерживать в смоченном состоянии до момента схватывания бетонного состава. Через десять дней опалубка снимается. Бетонную конструкцию можно будет подвергать полным нагрузкам только после того, как бетон полностью отвердеет.

Советы

Раствор лучше всего готовить в бетономешалках. Марка будет определяться необходимой прочностью конструкции, которая также влияет на количество добавляемой в раствор воды. Если создаются несущие конструкции, выбирают густой жесткий бетон. Сбрасывание материала на высоту больше 2 метров производится с помощью виброжелобов. Если производить свободное сбрасывание, то может произойти недопустимое расслоение материала. Если вы укладываете раствор в холодную погоду, при отрицательных температурах, вместо смачивания конструкцию нужно будет подогревать.

Как залить пол бетоном?

Следующие советы подойдут как для заливки теплого пола, так и для заливки фундамента. После выполнения земляных и подготовительных работ, обустройства щебеночных и песчаных оснований, сооружения опалубки и монтажа арматуры, вам можно будет приступать к заливке бетонного раствора. И здесь главное соблюсти правильную технологию, которая гарантирует вам надежный результат. Замечу, что технология может отличаться в зависимости от того, какой раствор вы используете: покупной (заводской) или собственного приготовления.

Покупной раствор

Если вы хотите добиться максимальной монолитности фундамента или пола, заливка должна производиться в кратчайшие сроки. Лучше всего использовать для этого миксеры. То есть, если вы захотите купить раствор на растворном узле, вам может предоставить миксер для заливки сам продавец, который в соответствующей технике будет осуществлять доставку своего товара. Это позволит вам сэкономить время. Один автомиксер способен доставить от 6 до 8 кубометров бетонного состава. Заливка производится с помощью деревянного желоба, который позволяет направлять материал в разные участки пола или фундамента. Раствор при этом распределяется с максимальной равномерностью. Если стройплощадка стеснена, то для заливки лучше использовать такое уникальное механизированное средство, как бетононасос. С его помощью можно подавать бетонный состав в удаленные точки объекта, куда не сможет подобраться автомиксер. Бетононасос отлично подходит для возведения железобетонных перекрытий и монолитных стен.

 

Раствор собственного приготовления

Несмотря на то, что покупной раствор резко снижает трудоемкость строительного процесса, он отражается на его конечной стоимости, поскольку расценки на 1 м3 (цена за куб) сегодня внушительные. На всякий случай узнайте перед заказом, сколько стоит заводской раствор. При осуществлении индивидуального строительства, например, при обустройстве ступеней лестниц, крыши, потолка или крыльца, для заливки используется бетонный состав собственного приготовления. Раствор, изготовленный своими руками, должен заливаться в сопровождении бетономешалки с электроприводом. Здесь важно учитывать некоторые нюансы. Во-первых, заливая кубометр раствора с помощью бетономешалки, вам нужно рассчитывать на 4-5 часов работы. Если вы хотите ускорить процесс, придется использовать две бетономешалки одновременно. Больше бетономешалок вам не понадобится, поскольку рабочий цикл смешивания компонентов занимает от 10 до 15 минут. Если вы не можете осуществить заливку за день, допустимо сделать 10-12-часовой перерыв. Раствор при этом должен быть равномерно разровнен по всему полу или фундаменту, после чего накрыт рубероидом или пленкой. Перед тем, как продолжать работы, нужно смыть с поверхности молочко. Данный метод носит название «заливка с горячим швом». Если перед продолжением работ прошло больше суток, то шов уже не горячий, а холодный. При этом первый слой перед последующей заливкой должен набрать хорошую прочность.

Подробнее о заливке:

Правила заливки бетона

Заливка фундамента своими руками

Технология заливки в разную погоду

Испытание бетона на прочность

Испытания на прочность при сжатии должны проводиться в лаборатории для определения характеристик и соответствия бетонного раствора заявленной марке. Кроме проверки на прочность, могут проводиться испытания на морозостойкость, на водонепроницаемость и т.д. Тестирование неразрушающими методами должно проводиться в рамках рекомендаций, без отклонений от методических норм. Это не пустые слова, а важное условие, поскольку при изменении методики испытания в рамках проведения нескольких тестов результаты могут отличаться, что делает все испытание бессмысленным. Следует помнить о том, что результаты проверки могут изменяться и отличаться как из-за бетонного состава, так и из-за методов измерения.

Неоднородность структуры

Фактором, который может играть весомую роль в измерении, является разница в структуре образцов, являющихся объектами лабораторного испытания. Понятно, что бетонные блоки являются неоднородными как по консистенции, так и по количеству внутренних дефектов. И добиться однородности просто невозможно. Это технологический фактор, который является неизбежным при проведении подобных испытаний. Как следствие, из одной партии бетонного раствора можно получить кубики, дающие различные показатели. Но эта разница, как правило, будет варьироваться в небольших диапазонах.

Наличие слабых мест

Седиментация, происходящая в результате изготовления блоков, приводит к образованию слабых мест. Они образуются непосредственно при производстве образцов, берущихся из пластичных смесей. Слабые места характеризуются горизонтальным положением, вследствие чего испытания бетона должны проводиться методом укладки бетонного блока не под углом, а ровно на бок. Это позволит уменьшить прочность блока за счет имеющихся дефектов. В конечных результатах бетонный раствор будет иметь определенный запас характеристик. Блоки нужно класть в одинаковом положении между прессовочными плитами. Этот ход позволит снизить погрешность.

Методические факторы

К методическим факторам можно отнести особенности метода проведения исследовательских работ, с учетом их отдельных аспектов. Результаты исследования будут зависеть от скорости деформации под прессом, от влажности раствора на момент сжатия, от напряжений в прессовочных плитах, от трения поверхностей плит (форм) и блока. То есть, контрольные данные могут изменяться даже под взаимодействием бетонных образцов с тестирующим инструментом или машиной. Чтобы снизить подобное влияние, нужно в процессе исследования использовать специальную смазку. В воде исследования не проводятся. На основании полученных данных составляется протокол (акт), с обязательной записью в журнале.

Заключение

Методические изменения или отклонения от норм проведения исследования могут оказывать существенное влияние на результаты испытаний. Все эти факторы в совокупности могут привести к возникновению отличий от реальных характеристик раствора, без предоставления возможности получить правдивую информацию о прочности состава. Чтобы не допустить высоких отклонений, испытания должны проводиться в соответствии с ГОСТом и СНиПом, с учетом всех вышеуказанных особенностей.

В следующих статьях я расскажу вам о технологиях укладки тротуарной плитки, дорожек, асфальта, природного камня, линолеума, ламината, паркета, брусчатки, дикого камня. Будут рассмотрены работы во дворе, в гараже, на площадке.

domisad.org

Испытание бетона, неразрушающий контроль прочности бетона, отбор кернов

Как известно, бетон это искусственный каменный материал, получаемый из правильно подобранной бетонной смеси после её формования и твердения.

Испытание бетона

Бетоны классифицируются по ниже перечисленным основным признакам:

  • по плотности (особо тяжёлые – плотность более 2500 кг/м3, тяжёлые – плотность от 1800 до 2500 кг/м3, легкие – плотность от 500 до 1800 кг/м3, особо легкие – плотность менее 500 кг/м3)
  • по назначению (обычный, гидротехнический, жаростойкий, теплоизоляционный, дорожный, и т. д.)
  • по виду вяжущего (цементные, силикатные, гипсовые, на жидком стекле, полимерные и т. д.)
  • по виду заполнителя (на плотных заполнителях, на пористых заполнителях и т. д.)
  • по крупности зерен заполнителя (крупнозернистые и мелкозернистые)
  • по структуре (плотные, крупнозернистые, поризованные, ячеистые)
  • по условиям твердения (естественного твердения, автоклавного твердения и т. д.)

Строительная лаборатория «Строймат и К» проводит экспертизу бетона и бетонной смеси. Экспертиза бетона проводится нами как на строящихся объектах, так и на построенных. Экспертиза бетона проводится с применением современного оборудования и позволяет определить многие физико-механические характеристики бетона.

Испытание бетона на предмет определения его строительно-технических характеристик проводится нами как в условиях стационарной лаборатории по контрольным образцам (плотность, прочность, морозостойкость, водонепроницаемость), так и на стройплощадке — разрушающими (выбуривание образцов кернов) и неразрушающими методами контроля прочности бетона (отрыв со скалыванием, упругий отскок, ультразвуковое прозвучивание).

Предлагаем Вам следующие испытания:

  1. Определение морозостойкости бетона по контрольным образцам
  2. Определение водонепроницаемости бетона по контрольным образцам
  3. Испытание образцов бетона
  4. Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкции
  5. Неразрушающий контроль бетона

 

1. Определение морозостойкости бетона по контрольным образцам по ГОСТ 10060

 

В качестве образцов используются кубы с ребром 100 мм.Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

 

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

 

Испытание бетонаМорозостойкость бетона — способность сохранять физико-механические (прочность при сжатии, плотность и т.д.) свойства при многократном переменном замораживании и оттаивании. Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости (F). Марка бетона по морозостойкости (F) характеризуется количеством циклов замораживания и оттаивания образцов бетона, испытанных по базовым методам, при которых сохраняются первоначальные физико-механические свойства по прочности и потери массы. Цикл испытания — совокупность одного периода замораживания и оттаивания образцов. Основные образцы — образцы, предназначенные для проведения испытаний замораживания и оттаивания. Контрольные образцы — образцы, предназначенные для определения прочности бетона на сжатие перед началом испытания основных образцов. Морозостойкость бетона определяют при достижении им проектного возраста (28 суток), что подтверждается проведением конечных испытаний образцов-кубов бетона на прочность при сжатии. Условия испытания для определения морозостойкости в зависимости от метода и вида бетона принимают по таблице 1.

Таблица 1

Метод и марка бетона по морозостойкости

Условия испытания

Вид бетона

Среда насыщения

Среда и температура замораживания, °С

Среда и температура замораживания, °С

Базовые методы

Первый F1

Вода

Воздушная, минус 18±2

Вода, 20±2

Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды

Второй F2

5 %- ный водный раствор хлорида натрия

То же

5 %- ный водный раствор хлорида натрия, 20±2

Бетоны дорожных и аэродромных покрытий и бетоны конструкций, эксплуатирующиеся при действии минерализованной воды

Ускоренные методы

Второй

5 %- ный водный раствор хлорида натрия

Воздушная, минус 18±2

5 %- ный водный раствор хлорида натрия, 20±2

Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды и легких бетонов марок по средней плотностью менее D1500

Третий

То же

5 %- ный водный раствор хлорида натрия минус 50±5

То же

Все виды бетонов, кроме легких бетонов марок по средней плотности менее D1500

 

Морозостойкость бетона определяют в проектном возрасте (после итоговых испытаний), установленном в нормативно-технической и проектноКоличество изготовляемых кубов-образцов бетона с ребром 100 мм:

  • при 1-ом и 2-ом методе определения морозостойкости принимают равным 18 шт. (6 контрольных + 12 основных)
  • при 3-м методе -12 шт. (6 контрольных + 6 основных)

Образцы для испытаний должны быть без внешних дефектов, разброс значений плотности отдельных образцов в серии (до их насыщения) не должен превышать 30 кг/м3. Массу образцов определяют с погрешностью не более 0,1 %. Образцы изготавливают и испытывают сериями.

Число циклов испытания основных образцов бетона в течение одних суток должно быть не менее 1. Испытания надо вести непрерывно. При вынужденных перерывах в испытании образцы должны храниться в замороженном состоянии в морозильной камере при температуре не выше минус 10°С, при первом и втором методах образцы хранят укрытыми влажной тканью, при третьем методе - в 5%-ном водном растворе хлорида натрия.

Соотношение между числом циклов испытаний и маркой бетона по морозостойкости, принимают по таблице 4.

Испытание бетона

2. Определение водонепроницаемости бетона по контрольным образцам по ГОСТ 12730.5.

 

В качестве образцов используются кубы с ребром 150 мм или цилиндры диаметром и высотой 150 мм.Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

 

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

Марка бетонов по водонепроницаемости определяется максимальной величиной давления воды, при котором не наблюдается ее просачивания через образцы, изготовленные и испытанные на водонепроницаемость согласно требованиям действующих государственных стандартов. Для бетонов конструкций, с требованиями повышенной плотности и коррозионной стойкости, а также по ограничению проницаемости, назначают марки по водонепроницаемости. Согласно требованиям ГОСТ 26633 установлены следующие марки по водонепроницаемости: W2; W4; W6; W8; W10; W12; W14; W16; W18; W20. Конкретные марки бетона конструкций по водонепроницаемости устанавливаются в соответствии с нормами проектирования и указываются как в стандартах и технических условиях так и в проектной документации (чертежах) на эти конструкции. Для проведения испытаний применяется установка УВФ-6, которая имеет шесть гнезд для крепления цилиндрических обойм с шестью образцами-цилиндрами. Данная установка предназначена для испытания бетонных образцов-цилиндров на водонепроницаемость по методу «мокрого пятна». УВФ-6 можно применять в закрытых помещениях с температурой воздуха +5 °C … +45 °C и влажностью до 80 %. Все бетонные образцы (одна серия) должны быть в проектном возраст (28 суток). Образцы бетона не должны иметь дефектов в виде трещин или сколов. Давление воды подается на нижнею торцевую поверхность бетонных образцов, установленных в обоймы, которые надежно закреплены в гнездах установки. Начиная со ступени в 0,2 МПа, выдерживают установленное давление на каждой ступени в течение 16 часов (для образцов высотой 15 см). Испытание длится до тех пор, пока на верхней торцевой поверхности образца не появятся признаки фильтрации воды в виде капель или мокрого пятна. Испытание останавливается и фиксируется давление при котором образовалась мокрое пятно. Водонепроницаемость каждого образца оценивают максимальным давлением воды, при котором еще не наблюдалось ее просачивание через образец. Водонепроницаемость серии образцов оценивают максимальным давлением воды, при котором на четырех из шести образцов не наблюдалось просачивание воды. Марку бетона по водонепроницаемости принимают по ГОСТ 12730.5, табл. 3. Кроме метода «мокрого пятна» применяется ускоренный метод определения водонепроницаемости бетона по его воздухопроницаемости. Для проведения испытаний используют прибор типа «АГАМА-2Р». Прибор и методика испытаний гостирована (ГОСТ 12730.5, Приложение 4). В качестве образцов, кроме цилиндров, можно использовать кубы с размером ребра 15 см. Принцип работы прибора заключается в измерении времени прохождения единицы объема газа через образец-куб. При параллельных испытаниях одних и тех же серий образцов цилиндров бетона и образцов кубов бетона (в проектном возрасте) на установке УВФ-6 и приборе АГАМА-2Р была выявлена закономерность — расхождение в показателях водонепроницаемости бетона до марок W6 — W8 практически отсутствует или в пределах ± 10%. При увеличении марки бетона по водонепроницаемости показатели по прибору АГАМА-2Р получаются завышенными по отношению к методу «мокрого пятна». Бетон марки по водонепроницаемости W12, определенной на установке УВФ-6, соответствовал бетону марки W16 — W18, определенной на приборе АГАМА — 2Р. Таким образом, использование прибора АГАМА — 2Р целесообразно на бетонах с низкой и средней маркой по водонепроницаемости, в отличие от установки УВФ-6. У прибора АГАМА — 2Р есть и другая проблема. Эмпирически установлено, что надежность показателей достигается при температуре воздуха 20 ±2 °С и влажности воздуха 60±5%.

 

3. Испытание образцов бетона. Определение прочности бетона на сжатие по ГОСТ 10180.

 

В качестве образцов используются кубы с ребром 300, 200, 150, 100 мм или цилиндры диаметром 300, 200, 150, 100 мм, высота цилиндра составляет два диаметра.

Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

 

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

Все, кто сталкивался с бетоном, знают, что самый простой и доступный метод определения прочности бетона — это испытание образцов бетона, изготовленных из данного бетона. Этим методом пользуются как производители (поставщики) бетона (для самоконтроля), так и его потребители (для контроля производителя). На первый взгляд, все очень просто. Отобрал пробу бетонной смеси и изготовил из нее серии контрольных образцов кубов для определения прочности бетона всей партии в промежуточном и проектном (28 суток) возрастах. В дальнейшем испытал. Если Вы производитель бетона — то своими силами, если — потребитель, то через независимую строительную лабораторию. На самом деле, уже при изготовление образцов бетона надо знать основные моменты:

1. Образцы изготавливают с нормируемыми размерами.

2. Для контроля прочности бетона на сжатие целесообразнее использовать металлические 2-х гнездные формы типа 2ФК-100 (каждая ячейка формы в виде куба с внутренним размером ребра 100 мм).

Данная металлическая форма (при правильном ее использовании) обеспечит вам:

  • нормируемые допуски в перпендикулярности смежных граней (отклонение не более 1 мм) и в размерах готового образца (отклонения в пределах ± 1 мм по ребрам)
  • удобство при изготовлении образцов (малый вес, быстрота и технологичность при сборке-разборке)

3. Пробу бетонной смеси для изготовления образцов бетона отбирают из средней части замеса, а при непрерывном бетонировании (например бетононасосом) в три приема в течении не более 10 минут (обязательно перемешивают перед укладкой в форму).

4. Укладку и уплотнение бетонной смеси следует производить не позднее, чем через 20 мин после отбора пробы, причем бетонную смесь заполняют в форме слоями высотой не более 100 мм. При осадке конуса (ОК) смеси более 10 см (П3 — П5), смесь укладывают штыкованием стальным стержнем диаметром 16 мм с закругленным концом. Число нажимов стержня рассчитывают из условия, чтобы один нажим приходился на 10 см2 верхней открытой поверхности образца, штыкование выполняют равномерно по спирали от краев формы к ее середине. При ОК менее 10 см (П1, П2) — бетонную смесь дополнительно уплотняют вибрированием, до прекращения ее оседания, выравнивания ее поверхности, появления на ней тонкого слоя цементного теста и прекращения выделения пузырьков воздуха.

5. Образцы изготавливают и испытывают сериями. Число образцов в серии (кроме ячеистого бетона) принимают равным 3-4 образца (в дальнейшем, при испытании, расчет средней прочности в серии ведется по двум или трем наибольшим значениям показателя прочности, соответственно).

6.При изготовлении нескольких серий образцов, предназначенных для определения прочностных характеристик бетона в различном возрасте, все образцы следует изготавливать из одной пробы бетонной смеси и уплотнять их в одинаковых условиях. Отклонения между собой значений средней плотности бетона отдельных серий и средней плотности отдельных образцов в каждой серии к моменту их испытания не должны превышать 50 кг/м3. При несоблюдении этого требования результаты испытаний не учитываются.

7. Перед испытанием образцы визуально осматривают на предмет наличие дефектов в виде трещин, сколов ребер, раковин и инородных включений. Образцы, имеющие трещины, сколы ребер глубиной более 10 мм, раковины диаметром более 10 мм и глубиной более 5 мм (за исключением крупнопористого бетона), а также следы расслоения и недоуплотнения бетонной смеси, испытанию не подлежат.

8. Количество серий образцов , которое необходимо изготовить для контроля прочности бетона в проектном возрасте (28 суток), согласно требований ГОСТ 18105, регламентируется п. 5.2. выше названного ГОСТ.

9. При входном контроле (контроль производителя бетонной смеси) образцы бетона надо хранить в нормальных условиях (температура 20±3°С, относительная влажность воздуха 95±5%). Контрольные образцы бетона, изготовленные для приемочного контроля (контроль и оценка партий бетона уложенного в монолитные конструкции) надо хранить в условиях, согласно регламенту или другой технической документации на производство данных железобетонных конструкций.

10. Оценка прочности бетона при испытании кубов-образцов производится либо с учетом коэффициента вариации по схеме А, Б либо без его учета -схема Г (ГОСТ 18105, п.4.4).

 

4. Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкций

Испытание бетонаОтбор кернов осуществляют с целью определения прочности бетона конструкции и визуального осмотра выбуренных образцов.

Испытания данным методом предназначены для определения класса бетона испытанных конструкций по прочности, и включает в себя следующие этапы.

1. Отбор кернов (выбуривание бетонных кернов) из конструкции на стройплощадке.

Отбор кернов из бетона конструкции производится с помощью установки для алмазного бурения типа D.Bender. Отсутствие арматуры контролируется цифровым детектором DMF 10 Zoom PROFESSIONAL. Количество и места отбора проб определяется по желанию Заказчика, с учетом требований ГОСТ 28570 (п.1.2 и 1.3). Схема расположения участков отбора образцов приводится в техническом отчете.

2. Подготовка образцов к испытаниям (из отобранных кернов).

Для определения физико-механических характеристик бетона из отобранных кернов подготавливают образцы-цилиндры в соответствии с ГОСТ 28570«Бетоны. Методы определения прочности по образцам, отобранным из конструкций» и ГОСТ 10180 «Бетоны. Методы определения прочности по контрольным образцам».

Выбуренный бетонный керн с помощью камнерезательной установки распиливают на образцы-цилиндры.

Количество образцов-цилиндров зависит от диаметра исходного керна, и варьируется от двух до четырех.

Для торцевания (то есть обработке керна с целью придания ему правильных геометрических размеров для испытания) используется специальный станок для торцевания кернов. Также, выравнивать торцы можно вручную путем нанесения выравнивающего слоя, в соответствии с методикой Приложения ГОСТ 28570, причем в качестве выравнивающих составов можно использовать эпоксидные композиции, цементное тесто, цементно-песчаные растворы.

После изготовления образцы-цилиндры выдерживаются в лабораторных условиях по ГОСТ 28570 (п.4.1.) в течение 6 дней.

3. Испытания образцов-цилиндров на прочность при сжатии.

Перед испытаниями образцы-цилиндры бетона осматриваются на наличие дефектов в виде трещин, сколов ребер, раковин и инородных включений, а так же следов расслоения и недоуплотнения бетонной смеси. В случае наличие таких дефектов как трещины, сколы, следы расслоения и недоуплотнения бетонной смеси – образцы бракуются. Остальные дефекты (раковины и т. д.) не должны превышать допустимых величин по ГОСТ 10180.

Перед испытанием образцы замеряют, взвешивают и испытывают на прессе. Полученные данные систематизируют в таблицу, выводя среднюю прочность по каждому керну (участку бетона конструкции).

 

5. Неразрушающий контроль бетона

 

Испытание бетонаВ настоящее время, при контроле прочности бетона, все большее распространение, получают методы неразрушающего контроля. Методы неразрушающего контроля бетона — это, в первую очередь, методы механического и ультразвукового контроля.

Неразрушающий контроль бетона проводится по ГОСТ 22690 (механические методы) и ГОСТ 17624 и (ультразвуковой метод).

При контроле прочности бетона монолитных конструкций в проектном возрасте, проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии.

При контроле прочности бетона монолитных конструкций в промежуточном возрасте методами неразрушающего контроля испытывают не менее одной конструкции каждого вида (плита, стена, колонна и т.д.) из контролируемой партии.

Число контролируемых участков должно быть не менее:

  • трех на каждую захватку для плоских конструкций (перекрытия, стены)
  • одного на 4 м длины для каждой линейной горизонтальной конструкции (балка, ригель)
  • шести на каждую линейную вертикальную конструкцию (колонна, пилон)

Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.

За единичное значение прочности бетона при неразрушающем контроле принимают среднюю прочность бетона контролируемого участка или зоны конструкции, или части монолитной или сборно-монолитной конструкции.

Примечание:

  • партия монолитных конструкций — часть, одна или несколько монолитных конструкций, изготовленных за определенное время
  • захватка — объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время
  • текущий коэффициент вариации прочности бетона — коэффициент вариации прочности бетона в контролируемой партии конструкций по схеме В

Число измерений, проводимых на каждом контролируемом участке конструкции определяются по ГОСТ 17624, ГОСТ 22690.

Прочность бетона определяют по предварительно установленным градуировочным зависимостям между прочностью бетона, полученной прямым разрушающим (выбуривание бетонных кернов, испытание кубов-образцов) или неразрушающим (отрыв со скалыванием) методами и косвенными характеристиками прочности при неразрушающем контроле (упругий отскок, ультразвук).

Методы неразрушающего контроля прочности (упругий отскок, ударный импульс отрыв со скалыванием, ультразвуковое прозвучивание) выбирают исходя из предполагаемых предельных значений прочности испытываемых конструкций.

К косвенным методам неразрушающего контроля прочности бетона относятся следующие методы:

Метод Предельные значения прочности бетона, МПа
Упругого отскока и пластической деформации 5-50
Ударного импульса 5-150
Отрыва 5-60

К прямым неразрушающим методам механического определения прочности относятся следующие методы:

Метод Предельные значения прочности бетона, МПа
Скалывания ребра 10-70
Отрыва со скалыванием 5-100

Существует также косвенный ультразвуковой метод определения прочности бетона (ГОСТ 17624-2012), основанный на связи между скоростью распространения ультразвуковых колебаний в бетоне и его прочностью.

Большинство приборов неразрушающего контроля работают при температуре наружного воздуха от – 10 °С до +50 °С.

Испытание бетонаИспытания бетона конструкций проводятся при положительной температуре бетона.

Допускается определять прочность бетона конструкций при отрицательной температуре, но не ниже минус 10 °С, при условии, что к моменту замораживания, конструкций находилась не менее одной недели при положительной температуре и относительной влажности воздуха не более 75 % (ГОСТ 22690-88, п. 1.4).

Неразрушающий контроль прочности бетона конструкций проводят с использованием приборов, основанных на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания.

В своей практической деятельности мы используем следующие приборы и методы неразрушающего контроля:

  • метод упругого отскока ( молоток «Шмидта»)
  • метод ультразвукового поверхностного прозвучивания (ультразвуковой прибор УК 1401)
  • отрыв со скалыванием (прибор «ПИБ»)

При испытании или обследовании железобетонных монолитных конструкций на предмет фактической прочности, мы сочетаем первые два косвенных метода с прямым методом «отрыв со скалыванием».

Методика проведения испытаний детально изложена в ГОСТ 22690 (п.п. 7.2 и 7.6), ГОСТ 17624.

Достоинства и недостатки приборов и методов неразрушающего контроля прочности бетона, применяемого нами, приведены ниже.

 

УПРУГИЙ ОТСКОК(диапазон измерений 5…50 МПа)

 

Недостатки:

  • частая поверка (даже импортных моделей)
  • построение градуировочных зависимостей
  • контроль прочности бетона ведется в поверхностном слое толщиной 25…30 мм, что не дает полной картины прочности

Преимущества:

  • простота и быстрота в работе
  • может использоваться при испытании бетона в густоармированных конструкциях

Примечания:

  • число испытаний на участке — не менее девяти
  • расстояние между местами испытаний — не менее 30 мм
  • расстояние от края конструкции до места испытаний — 50 мм
  • толщина конструкции — 100 мм

 

УЛЬТРАЗВУКОВОЙ МЕТОД

(диапазон измерений позволяет контролировать прочность бетона класса В7,5 - В60)

Недостатки:

  • высокая квалификация сотрудника ввиду реагирования прибора на изменение влажности, температуры, степени армирования бетона
  • построение градуировочной зависимости
  • возраст бетона не менее семи суток

Преимущества:

  • быстрота (малый вес)
  • контроль прочности бетона ведется в поверхностном слое толщиной сопоставимой с методом отрыва со скалыванием (50 мм)
  • при отрицательной температуре бетона (не ниже -10 °С) испытания проводятся на холодной поверхности бетона (отогревать бетон не надо)

Примечания:

  • первоначально, на каждом участке магнитным прибором («Поиск» или др.) определяют положение арматуры, а затем ультразвуковым прибором проводят не менее двух измерений косвенного показателя, которые проводятся в двух взаимно перпендикулярных направлениях
  • отклонение отдельных (двух) результатов измерений скорости распространения ультразвука на каждом участке от среднего арифметического значения результатов измерений для данного участка не должно превышать 50 м/с или 2 %
  • прозвучивание производят под углом примерно 45° к направлению арматуры, параллельно или перпендикулярно ей, причем, при прозвучивании в направлении, параллельном арматуре, линию прозвучивания располагают между арматурными стержнями
  • за единичное значение косвенной характеристики прочности бетона участка конструкции принимается среднее из двух показаний прибора
  • при построении градуировочной зависимости по данным параллельных испытаний ультразвуковым методом и методом отрыва со скалыванием или испытаний образцов, вырезанных из конструкций, на подлежащих испытанию конструкциях или их зонах предварительно проводят ультразвуковые измерения и определяют участки с минимальным и максимальным косвенными показателями
  • выбирают не менее 12 участков, включая участки, в которых величина косвенного показателя максимальна, минимальна и имеет промежуточные значения
  • возраст бетона в отдельных участках не должен отличаться более чем на 25 % среднего возраста бетона подлежащей контролю конструкции или группы конструкций (исключение составляет построение градуировочной зависимости конструкций, возраст которых превышает два месяца)

Испытание бетона

ОТРЫВ СО СКАЛЫВАНИЕМ(диапазон измерений 5- 100 МПа)

Недостатки:

  • частая поверка (минимум раз в 2 месяца)
  • относительная трудоемкость (требуется предварительное сверление отверстий под анкера)
  • тяжело использовать в густоармированных (ячейка армирования должна быть от 150 мм) и тонкостенных (толщина проверяемого слоя бетона должна быть не менее 100 мм). конструкциях.
  • при отрицательной температуре бетона (не ниже -10 °С) отверстие под анкер на всю глубину прогревается до температуры как минимум 0 °С.

Преимущества:

  • характеризуется наибольшей точностью измерений
  • самый широкий диапазон прочности (5-100 МПа)
  • не требует построения градуировочной зависимости по ГОСТ 22690)
  • позволяет использовать градуировочную зависимость в виде формулы R= m1 m2 P (Приложение В ГОСТ 22690), где

m1 – коэффициент, учитывающий максимальный размер крупного заполнителя и равный 1 при крупности менее 50 мм;m2 – коэффициент пропорциональности для перехода от усилия вырыва ,кН, к прочности бетона МПа. и определяемое по табл. В.1, ГОСТ 22690.

Тип анкера Предполагаемый диапазонпрочности бетона, МПа Диаметр анкера, мм Глубина заделки анкера, мм Значение коэффициента m2 длятяжелого бетона
II 40-755-75 1624 3548 1,70,9

Примечания:

Для получения качественных измерений методом отрыва со скалыванием отверстие для заложения анкера должно быть не ближе 150 мм от края изделия, минимальная толщина конструкции -2 глубины заделки анкера

  • расстояние между участками испытаний — не менее величины пяти глубин заделки анкера
  • величина проскальзывания анкера должна контролироваться, и составлять не более 10% глубины заложения анкера (при большем проскальзывании происходит занижение показателя на 10-20%)

Достоверность неразрушающего контроля прочности бетона зависит от:

  • методики проведения испытаний, включающей выбор участков испытаний, их количества, состояния поверхности, возраста, условий твердения бетона
  • оптимального выбора методов контроля и приборов
  • правильного построения градуировочных зависимостей с учетом оценки погрешности их построения, исправности показателей применяемых приборов неразрушающего контроля

Большое значение имеет квалификация персонала, проводящего испытания.Контроль прочности бетона монолитных конструкций проводят по схеме В (с учетом характеристик однородности прочности бетона — коэффициента вариации прочности бетона в контролируемой партии) или по схеме Г (без учета характеристик однородности прочности бетона).

 

Чтобы рассчитать стоимость работ на неразрушающий контроль бетона, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

www.stroimat92.ru

Определение прочности бетона неразрушающими методами контроля

Определение прочности бетона при обследовании зданий и сооружений

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Требуется построить градуировочную зависимость?

Мы выполним все расчеты и поможем построить индивидуальную градуировочную зависимость. Напишите нам, заполните форму ниже. 

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-2012), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

№Наименование методаДиапазон применения*, МПаПогрешность измерения**
1Пластической деформации5 ... 50± 30 ... 40%
2Упругого отскока5 ... 50± 50%
3Ударного импульса10 ... 70± 50%
4Отрыва5 ... 60нет данных
5Отрыва со скалыванием5 ... 100нет данных
6Скалывания ребра10 ... 70нет данных
7Ультразвуковой10 ... 40± 30 ... 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;** по данным источника [3] без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-2012, методы ударного импульса и упругого отскока по ГОСТ 22690. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы [1,2]. В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона [3].

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

Зависимость между прочностью бетона и скоростью ультразвуковых волнЗависимость между прочностью бетона и скоростью ультразвуковых волнРис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям СП 13-102- 2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля [2]. Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

К данной группе по ГОСТ 22690-2015 относится три метода:

  1. Метод отрыва;
  2. Метод отрыва со скалыванием;
  3. Метод скалывания ребра.

Контроль прочности бетона методом отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем. На сегодняшний день могут применяться современные двухкомпонентные клеи,производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» и др.). В отечественной литературе по испытанию бетона [5, 6] методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

Прибор для метода отрыва с диском для приклеивания к бетонуПрибор для метода отрыва с диском для приклеивания к бетонуРис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (Rbt),по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии [7]:

Форм 2Форм 2

 

 

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ПИВ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010, а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко применяемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Контроль прочности бетона методом отрыва со скалыванием

Испытание бетона методом отрыва со скалываниемИспытание бетона методом отрыва со скалываниемРис. 3. Испытание бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

Форм 3Форм 3

 

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

Форм 4Форм 4

 

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

ПреимуществаМетод
ОтрывОтрыв со скалываниемСкалывание ребра
Определение прочности бетонов классом более В60-+-
Возможность установки на неровную поверхностьбетона (неровности более 5 мм)-+-
Возможность установки на плоский участок конструкции (без наличия ребра)++-
Отсутствие потребности в источнике электроснабжения для установки+*-+
Быстрое время установки-++
Работа при низких температурах воздуха-++
Наличие в современных стандартах-++
* без свердения борозды, ограничивающей участок отрыва

Для наглядности сравнения характеристики прямых методов контроля представлены в табл. 2.

Поданным, приведенным в таблице, видно, что наибольшим числом преимуществ характеризуется метод отрыва со скалыванием.

Однако, несмотря на возможность применения данного метода по указаниям норм без построения частной градуировочной зависимости, у многих специалистов возникает вопрос о точности получаемых результатов и соответствии их прочности бетона, определяемой методом испытания образцов. Для исследования этого вопроса, а также сопоставления результатов измерений, полученных прямым методом, с результатами измерений косвенными методами проведен эксперимент, описанный далее.

Результаты сравнения методов

В лаборатории «Обследование и испытание зданий и сооружений» ФГБОУ ВПО «СПбГПУ» были проведены исследования при использовании различных методов контроля. В качестве объекта исследования использован фрагмент бетонной стены, выпиленный алмазным инструментом. Габариты бетонного образца — 2,0 х 1,0 х 0,3 м. Армирование выполнено двумя сетками арматуры диаметром 16 мм, расположенной с шагом 100 мм с величиной защитного слоя 15-60 мм. В исследуемом образце применен тяжелый бетон на заполнителе из гранитного щебня фракции 20-40.

Для определения прочности бетона использован базовый разрушающий метод контроля. Из образца с помощью установки алмазного сверления выбурены 11 кернов различной длины диаметром 80 мм. Из кернов изготовлены 29 образцов — цилиндров, удовлетворяющих по своим размерам требованиям ГОСТ 28570-90. По результатам испытания образцов на сжатие выявлено, что среднее значение прочности бетона составило 49,0 МПа. Распределение значений прочности подчиняется нормальному закону (рис. 4). При этом прочность исследуемого бетона имеет высокую неоднородность с коэффициентом вариации 15,6% и СКО равным 7,6 МПа.

Для неразрушающего контроля применены методы отрыва, отрыва со скалыванием, упругого отскока и ударного импульса. Метод скалывания ребра не применялся по причине близкого расположения арматуры к ребрам образца и невозможности выполнения испытаний. Ультразвуковой метод не использован, так как прочность бетона выше допустимого диапазона для применения данного метода (табл. 1). Выполнение измерений всеми методами производилось на грани образца, срезанной алмазным инструментом, что обеспечивало идеальные условия с точки зрения ровности поверхности. Для определения прочности косвенными методами контроля использовались градуировочные зависимости, имеющиеся в паспортах приборов, или заложенные в них.

Таблица 3. Результаты измерения прочности различными методами

№п/пМетод контроля(прибор)Количество измерений, nСреднее значение прочности, Rm, МПаКоэффициент вариации, V, %
1Испытание на сжатие в прессе(ПГМ-1000МГ4)2949,015,6
2Метод отыва со скалыванием(ПОС-50МГ4)651,14,8
3Метод отрыва (DYNA)349,5-
4Метод ударного импульса(Silver Schmidt)3068,47,8
5Метод ударного импульса(ИПС-МГ4.04)10078,25,2
6Метод упругого отскока(Beton Condtrol)3067,87,27
Распределение значений прочности по результатам испытаний на сжатиеРаспределение значений прочности по результатам испытаний на сжатиеРис. 4. Распределение значений прочности по результатам испытаний на сжатие

На рис. 5. представлен процесс измерения методом отрыва. Результаты измерений всеми методами представлены в табл. 3.

Поданным, представленным в таблице, можно сделать следующие выводы:

• среднее значение прочности, полученной испытанием на сжатие и прямыми методами неразрушающего контроля, различается не более чем на 5%;

•     по результатам шести испытаний методом отрыва со скалыванием разброс прочности характеризуется низким значением коэффициента вариации 4,8%;

•     результаты, полученные всеми косвенными методами контроля, завышают прочность на 40-60%. Одним из факторов, приведших к данному завышению, является карбонизация бетона, глубина которой на исследуемой поверхности образца составила 7 мм.

Выводы

Измерение прочности методом отрываИзмерение прочности методом отрываРис. 5. Измерение прочности методом отрыва

1. Мнимая простота и высокая производительность косвенных методов неразрушающего контроля теряются при выполнении требований построения градуировочной зависимости и учете (устранении) влияния факторов, искажающих результат. Без выполнения этих условий данные методы при обследовании конструкций можно применять только для качественной оценки прочности по принципу «больше — меньше».

2. Результаты измерений прочности базовым методом разрушающего контроля путем сжатия отбираемых образцов также могут сопровождаться большим разбросом, вызванным как неоднородностью бетона, так и другими факторами.

3. Учитывая повышенную трудоемкость разрушающего метода и подтвержденную достоверность результатов, получаемых прямыми методами неразрушающего контроля, при обследовании рекомендуется применять последние.

4. Среди прямых методов неразрушающего контроля оптимальным по большинству параметров является метод отрыва со скалыванием.

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург)

Список литературы:

1.  Штенгель В. Г. О корректном применении НК в обследованиях железобетонных конструкций длительно эксплуатирующихся сооружений // В мире НК. 2009. №3. С. 56-62.

2.  Улыбин А. В. О выборе методов контроля прочности бетона построенных сооружений // Инженерно-строительный журнал. 2011. №4 (22). С. 10-15

3.  Джонс Р., Фэкэоару И. Неразрушающие методы испытаний бетонов. Пер.срумынск. М., Стройиздат, 1974. 292 с.

4.  Штенгель В. Г. Общие проблемы технического обследования неметаллических строительных конструкций эксплуатируемых зданий и сооружений // Инженерно-строительный журнал. 2010. №7(17). С. 4-9.

5.  Пособие по обследованию строительных конструкций зданий. М.: ЦНИИПромзданий, 1997.179 с.

6.  Лужин О. В. Обследование и испытание зданий и сооружений/О. В.Лужин и др. М.: Стройиздат, 1987. 264 с.

7.  Строительные конструкции: учебное пособие /Р. Л. Маилян, Д. Р. Маилян, Ю. А. Веселов. Изд. 4-е. Ростов н/Д : Феникс, 2010. 875 с.

Также читайте:

Оконная фурнитура | Двери межкомнатные | Деревянные окна | Фурнитура для межкомнатных дверей

Похожее

vectornk.ru


Смотрите также