Бетон на известняке. Известковый бетон


Ускорители схватывания и твердения в технологии бетонов

6.6. Применение молотой извести-кипелкис с соляной кислотой в качестве интенсификатора твердения тяжелых и ячеистых бетонов.

Традиционное заблуждение, укоренившееся в умах многих поколений строителей – негашеную известь нельзя применять в бетонах. Базировалось оно на вполне справедливом утверждении, что “при затворении водой и образованием из безводной окиси гидроокиси кальция происходит изменение объема вновь полученного продукта в 3.5 раза”.

Качество цемента действительно сильно зависит от количества в нем свободной окиси кальция – извести-кипелки попросту. Еще в самом начале исследования цементов было установлено, что именно известь-кипелка, содержащаяся в цементе в несвязанном состоянии, является причиной неравномерности изменения объема цемента. Отсюда и сложилось убеждение, что поскольку даже незначительное количество свободной извести, оказавшейся внутри цемента и не связанной в силикаты и алюминаты кальция во время обжига, ухудшают качество цемента, то дополнительная добавка её в цемент в большом количестве извне тем, более недопустима.

При всем том упускается тот факт, что негашеная известь, которая образовалась внутри цемента во время его обжига и не успела войти в состав клинкера, и известь, введенная в готовый цемент, впоследствии – ведут себя по-разному. В первом случае получается, что известняк обжигается при температуре обжига клинкера (около 1450 оС), и не успевшая войти в состав клинкера часть извести оказывается сильно пережженной. Такая известь характеризуется очень медленным гашением. Как правило, этот процесс длится несколько десятков суток в уже затвердевшем бетоне. Удельный вес извести-кипелки CaO – 3.1, а получившейся в результате взаимодействия с водой гидроокиси Ca(OH)2 – 2.1. Этот процесс в толще набирающей (или даже уже набравшей) прочность цементной матрицы вызывает приращение объема пор, что приводит к неравномерному изменению объема цемента и его растрескиванию.

При обжиге же извести-кипелки температура обжига обычно не превышает 1000 оС. Обожженная при такой сравнительно невысокой температуре известь, при введении в цемент гасится в течение нескольких минут. Как правило, достаточно тонкомолотая известь способна прогасится в составе бетона еще даже до начала его схватывания. В этом случае изменение её объема не вызывает каких либо внутренних напряжений вообще.

Вот почему добавка к цементу до 15% тонкомолотой окиси кальция (извести-кипелки) не вызывает вредных последствий. А содержание той же извести в, на порядок меньших количествах, в составе клинкерной части цемента – необратимо портит цемент.

Если вводить в цемент одновременно с негашеной известью соляную кислоту или хлористый кальций, то гашение извести будет протекать еще быстрее, что абсолютно исключает возможность её вредного воздействия на цемент.

Все эти соображения сохраняют силу, если в цементный бетон прибавлена тонкомолотая высококальциевая известь. Крупные частицы, образующиеся при грубом помоле, а тем более комки извести-кипелки, могут вызвать неравномерное изменение объема цемента и даже растрескивание бетона.

Если вместо обычного песка использовать крупно размолотый клинкер – сырье, из которого делают цемент, окажется, что прочность получившегося бетона намного выше – в 3 – 5 раз. Это явление объясняется тем, что поверхность песка из клинкера активно взаимодействует с твердеющим цементом. Обычный же песок представляющий собой окись кремния в нормальных условиях с цементом практически не вступает в какое либо химическое взаимодействие. И только при температуре 170 – 200 оС образуются гидросиликаты — основа прочности силикатных бетонов, в т.ч. и ячеистых газосиликатов. Но такую технологию, возможно, реализовать только при автоклавировании изделий, что очень дорого, чрезвычайно хлопотно и реализуемо только в производственных условиях.

Еще в 1947 году советские ученые, заинтересовавшись темой обеспечения гидросиликатного твердения без ресурсоемкого автоклавирования, начали экспериментировать с заполнителями. Вместо песка попробовали использовать молотый доменный шлак. Эксперименты оказались весьма обнадеживающими. Бетон “на пробужденном” шлаке, так его стали называть, оказался в несколько раз прочнее традиционного — без особых хлопот удалось достичь марочность до М850. А все потому, что доменный шлак обладает активностью по отношению к цементу.

А нельзя ли обычные заполнители, тот же песок, например, сделать активными по отношению к цементу? – Вот было бы здорово.

Оказалось, что, обработав кварцевый песок соляной кислотой плотностью 1.19 в течение 30 минут можно сделать его активным по отношению к извести. Иными словами реализовать идею гидросиликатного твердения в обычных условиях и безо всяких автоклавов.

На практике эта технология реализуется следующим образом. В смеситель загружается порция песка. Туда же приливается раствор соляной кислоты плотностью 1.19. Пол часа смесь перемешивается. Затем в тот же смеситель добавляется негашеная известь в количестве 15 – 20% от предполагаемой массы цемента. Еще через время, добавляется цемент. После непродолжительного перемешивания смесь готова.

Существенная модернизация этой схемы – замена песка (либо части песка) золой-уносом. Её тонина очень привлекательна для пенобетонной технологии (смотри ранее вышедшие рассылки). Но реалии жизни не позволяют в полной мере воспользоваться всеми её преимуществами. Дело в том, что в свежей золе-уносе много пережженной извести. Если её сразу ввести в состав, через время эта известь начнет гасится в уже готовом изделии и разорвет его в пыль. Поэтому свежую золу использовать нельзя – её обычно выдерживают в отвалах по несколько лет при постоянном увлажнении. В результате она превращается в абсолютно нетранспортабельную массу. В присутствии соляной кислоты даже в свежей золе-уносе известь очень быстро нейтрализуется, переходя в хлористый кальций.

6.6.1 Тепловыделение при гашении извести

Характерным для совместного введения в бетон негашеной извести и соляной кислоты является выделение тепла при их взаимодействии друг с другом и с водой. Количество выделенного тепла можно подсчитать по следующим уравнениям экзотермических реакций:

1. Гашение извести

CaО + h3O = Ca(OH)2 = 15.5 ккал

Согласно этому уравнению, 1 кг химически чистой извести при гашении её водой выделяет 276 ккал тепла.

2. Нейтрализация извести соляной кислотой и образование в результате хлористого кальция:

Ca(OH)2 x ag + 2HCl x ag = CaCl2 x ag + 2h3O + 28 ккал

Из этого уравнения следует, что 1 кг извести при нейтрализации его соляной кислотой выделяет 384 ккал тепла.

3. В присутствии образовавшегося в растворе хлористого кальция растворимость свободной извести увеличивается. Теплота растворения определяется из уравнения:

Ca(OH)2 x ag = Ca(OH)2 x ag + 3 ккал

1 кг растворяющейся извести выделяет 40 ккал тепла

4. Взаимодействие избытков извести с хлористым кальцием высокой концентрации может привести к образованию хлорокиси кальция:

3Ca(OH)2 + CaCl2 + n x h3O = 3CaO x CaCl2 x 16h3O + 79.5 ккал

Каждый килограмм образующейся хлорокиси выделяет 140 ккал тепла

Неизбежным следствием перечисленных выше экзотермических реакций является выделение тепла внутри бетона и повышение его температуры. Помимо этого минералы портландцементного клинкера также выделяют тепло в результате химической реакции с водой в результате гидролиза и гидратации. Введенные в состав бетона ускорители “подстегивают” это тепловыделение.

Вследствие химического воздействия ускорителей, вовлекающих в реакции большую массу цементного вещества, цемент выделяет добавочное количество тепла в начальные сроки гидратации и твердения. Исследованиями установлено, что для большинства портландцементов с 30 – 45% С3S (трехкальциевого силиката) от веса минералов цемента, при добавке 1% хлористого кальция, тепловыделение 1 кг цемента за первые сутки увеличивается на 4 – 7 ккал, т.е. примерно на 10% больше, чем в обычных условиях.

Под воздействием ускорителей быстрее протекает гидратация цемента, и, следовательно, интенсивней выделяется тепло в начальные сроки твердения.

Все перечисленные выше экзотермические реакции в своей совокупности и определяют явление, которое приводит к сильному саморазогреву бетона. В таблице 661-1 дано сопоставление количества и скорости выделения тепла различными веществами в бетоне.

Таблица 661-1

Выделение тепла 1 кг различных веществ

Наименование вещества и характер реакции

Количество тепла в ккал

Скорость выделения тепла

Гидролиз и гидратация цемента марки М400

30

В течении 3-х дней

Гидратация извести

276

В течение нескольких часов

Нейтрализация извести кислотой

376

В первые часы

Растворение извести в водном растворе хлористого кальция

40

В первые часы

Образование хлорокиси кальция (при высоких концентрациях CaCl2)

140

В первые часы

Дрова сухие (для справки)

2000 — 2500

 

Из таблицы видно, как велико количество тепла, выделяемого при реакции взаимодействия извести-кипелки с соляной кислотой и водой. В суммарном исчислении выделяется тепла всего в 3 раза меньше, чем от аналогичного количества сухих дров. Да известью топить можно!

При гидратации 1 кг извести и последующей нейтрализации её кислотой в течение первых же часов выделяется в 20 с лишним раз больше тепла, чем выделяет 1 кг портландцемента марки М400 в течение целых 3-х суток.

Следует обязательно отметить, что в первые 6 – 8 часов сам цемент при обычных условиях схватывания и твердения тепла практически не выделяет. А вот при введении ускорителей, именно на этот период, приходится максимум тепловыделения. Возникает вопрос, на сколько же градусов может нагреться бетон в результате перечисленных выше экзотермических реакций?

Предположим, что оптимальные дозировки извести-кипелки и соляной кислоты находятся в пределах: для кислоты порядка 1 – 2%, для извести 10 – 15% от массы цемента. Расход цемента примем в 200 и 450 кг, объемный вес тяжелого бетона – 2200 кг/м3, а пенобетона – 800 кг/м3, теплоемкость того и другого, для упрощения, примем одинаковой – 0.25 ккал/кг град. Теплоизоляцию будем считать идеальной, — тоже для упрощения.

Результаты расчетов, проведенных на основе приведенных выше термохимических реакций между химически чистыми добавками, а также водой и цементом, сведены в таблицу 661-2

Таблица 661-2

Степень саморазогрева 1 м3 бетона трехсуточного возраста при различном расходе цемента и добавки ускорителя

 

Расход цемента в бетоне и величина добавки ускорителя

Тяжелый бетон плотностью 2200 кг/м3

Пенобетон плотностью 800 кг/м3

Прирост температуры в оС

Конечная температура бетона в оС при начальной температуре в 15оС

Прирост температуры в оС

Конечная температура бетона в оС при начальной температуре в 15оС

Бетон с расходом цемента в 200 кг/м3 без ускорителей

10.9

25.9

То же с 1% HCl + 15% CaO

26

41

То же с 2% HCl + 15% CaO

36.6

51.6

Бетон с расходом цемента в 450 кг/м3 без ускорителей

24.5

39.5

9.0

24

То же с 1% HCl + 10% CaO

58

73

21.1

36.1

То же с 2% HCl + 15% CaO

80

95

29.1

44.1

Приведенные в таблице данные свидетельствуют, что бетон даже без добавок способен к саморазогреву под действием тепла выделяющегося при гидратации цемента. Если учесть, что за 30 дней цемент выделит тепла в 2 раза больше, чем за 3 дня, то и его температура за это время должна была бы повысится соответственно в два раза. На практике этого не происходит т.к. принятое нами выше допущение об идеальной теплоизоляции практически невозможно, да и не нужно выполнять.

С введением добавок саморазогрев бетона возрастает более чем в три раза. Известно, что тепло положительно и более эффективно влияет на темпы твердения молодого бетона. Поэтому тепло, выделяемое при действии ускорителей в начальные сроки твердения, ценнее тепла, выделяемого цементом в более поздние сроки.

 

 

Конечными продуктами взаимодействия извести-кипелки и соляной кислоты внутри бетона является хлористый кальций. Помол комовой извести до тонины, когда её без боязни можно вводить в составе этой композиции достаточно хлопотен. Еще сложней обеспечить её сохранность – она начинает очень бурно гаситься уже от влаги воздуха. Возникает вопрос, изменится ли саморазогрев бетона, если вводить в него уже готовые гашенную известь и хлористый кальций, или гашенную известь и соляную кислоту.

Безусловно, изменится, так как тепло, образующееся в процессе гашения извести кислотой и при образовании хлорокиси не попадает теперь в бетон. (Для заинтересовавшихся этой темой весь процесс взаимодействия извести и кислоты разбит на отдельные этапы (см. выше). При желании можно легко подсчитать тепловыделение “убирая” отсутствующие реакции).

Там, где необходим быстрый и сильный саморазогрев бетона и быстрое его твердение, нужно применять известь-кипелку и соляную кислоту, а не хлористый кальций.

1. Добавка в бетон только одной молотой негашеной извести в дозировке до 5% повышает суточную и 280ми суточную прочность на 15 – 25%

2. Дальнейшее увеличение количества вводимой извести вызывает пропорциональное снижение прочности бетона. Во многом это может быть объяснено тем, что в традиционных помольных агрегатах, шаровых и вибромельницах, невозможно достичь требуемой тонины помола извести – на определенной стадии помола начинаются процессы самоагрегатации и тонина помола стабилизируется. Если известь-кипелку смолота на высокоэнергетических мельницах ударного действия типа дезинтегратора или десимбератора в которых самоагрегатация наступает гораздо позже дозировку извести в бетоны можно довести до 15 – 20% без потери прочности.

3. Добавка в бетон одной соляной кислоты несколько ускоряет его твердение лишь в первое время. Причем с увеличением добавки соляной кислоты до 2.5% наряду с ускорением набора прочности отмечается её спад в месячном возрасте.

4. Комбинированная добавка извести и соляной кислоты меняет весь процесс твердения кардинальным образом.

а) Добавка 0.83% кислоты и до 15% негашеной извести ускоряет твердение бетона в первые же сутки более чем в 3 раза, через трое суток – до 1.5 раз и обеспечивает нарастание прочности бетона в последующие сроки.

б) Добавка 1.67% кислоты и до 15% негашеной извести ускоряет твердение бетона в первое время еще более значительно: через 6 часов он приобретает прочность, соответствующую от 70 до 100% суточной прочности обыкновенного бетона, через сутки – до 350% прочности обыкновенного бетона того же возраста и обеспечивает нарастание прочности бетона в месячном возрасте на 15 – 20%.

в) Добавка 2.5% кислоты и до 15% негашеной извести ускоряет твердение бетона, особенно резко выраженное в первое время (прочность бетона с этими добавками уже через 6 часов достигает 150% суточной прочности обыкновенного бетона), и обеспечивает нарастание прочности бетона в месячном возрасте на 10 – 12%.

Комбинированная добавка негашеной извести и соляной кислоты ускоряет твердение бетона в первые часы в среднем в 2 – 5 раз (через сутки в 2 раза) эффективней, чем добавка одной соляной кислоты без негашеной извести. Оптимальной следует считать дозировку извести – 10% и соляной кислоты до 2% от массы цемента.

Все приведенные выше рассуждения и дозировки справедливы для химически чистых веществ. На практике же этого никогда не бывает. Строительная известь, даже первого сорта содержит максимум 85% СаО, а известь второго сорта – порядка 70% СаО. Эти соображения следует учитывать при отработке конкретной технологии исходя из местных реалий.

6.6.2 Влияние саморазогрева бетона на схватывание

Из факта саморазогрева бетона вытекает ряд важных следствий. Известно, что с повышением температуры среды схватывание цементов ускоряется. При самонагреве бетона повышается температура не среды, а самого цемента, но результат будет один и тот же: сроки схватывания цемента резко сокращаются.

До какой же температуры способно разогреться цементное тесто с добавками ускорителями и как быстро может протекать это разогревание? Степень саморазогрева материала зависит не только от количества выделившегося тепла, но и от скорости его образования, а также от быстроты отвода его в окружающую среду.

Скорость образования тепла определяется скоростью гашения извести и нейтрализации её кислотой. По скорости гашения извести разделяются на: быстрогасящиеся, которые достигают максимальных температур гашения через 5 минут; среднегасящиеся – до 30 минут и медленногасящиеся – больше 30 минут. Присутствие соляной кислоты резко повышает скорость гашения любой извести. В этом случае все они оказываются по существу быстрогасящимися, причем, даже при минимальных добавках ускорителей, температура цементного теста, в первые же минуты после затворения его водой, может быть настолько высокой, что схватывание цемента наступит очень быстро. Так при добавке 3% CaCl2 и 15% СаО схватывание цементного теста нормальной густоты наступает уже через 1 — 4 минуты, а оканчивается через 12 — 20 минут. Но в реальных бетонах, где присутствуют заполнители и дозировка воды против потребной для получения теста нормальной густоты гораздо выше, разогрев и достижение температурного максимума будут приемлемыми.

В связи с ускоренным схватыванием, бетон с ускорителями гораздо быстрее, чем бездобавочный, теряет пластичность (см. Таблица 662-1).

Таблица 662-1

Изменение пластичности бетона при введении добавок-ускорителей.

Вид и количество добавок-ускорителей

Водоцементное соотношение (В/Ц)

Время потери пластичности в минутах

Бетон без добавок

0.57

Бетон c 3% CaCl2

0.57

75

Бетон c 3% CaCl2 + 15% извести-кипелки

0.65

23

Бетон c 2% CaCl2 + 15% извести-кипелки

0.65

18

Длительное сохранение бетоном пластичности полезно, а порой и просто необходимо, при бетононировании массивных сооружений или при необходимости длительной транспортировки бетонной смеси. При изготовлении же мелких бетонных изделий – стеновых камней, элементов мощения, малых архитектурных форм, производство пенобетона и т.д., когда изготовление и укладка бетона сосредоточены в одном месте, длительный период схватывания абсолютно не нужен. Мало того он вреден, т.к. задерживает распалубовку изделий, требует большого количества форм и производственных площадей, загромождает производственные площади и т.д.

6.6.3 Влияние совместного введения извести и соляной кислоты на твердение цемента.

Так как твердение – процесс длительный, измеряемый неделями, а выделение тепла вследствие взаимодействия ускорителей, наоборот измеряется часами, то, казалось бы, это тепло должно влиять только на темпы схватывания бетона, а не на скорость его твердения. На самом деле оно оказывает несомненное и значительное влияние и на скорость его твердения.

Проведенные в свое время эксперименты показали, что если относительную прочность бетона, выдержанного в первые 6 часов при 20оС а затем еще сутки при комнатной температуре принять за 100%, то относительные прочности бетонов выдержанных первые 6 часов при температуре 40оС, 60оС и 80оС и затем сутки при комнатной температуре, соответственно составляют 232%, 420 и 550%. Как видим, при воздействии температуры на бетон в самый начальный момент его твердения, прочность намного возрастает.

Применение соляной кислоты и смеси извести-кипелки с соляной кислотой позволяет получать быстротвердеющие бетоны. Комплексные эксперименты, проведенные Киселевым Н.Н. в Горьковском инженерно-строительном институте в начале 50-х годов дали следующие результаты (см. Таблица 663-1):

Таблица 663-1

Относительное ускорение твердения бетона при добавках к нему соляной кислоты и извести-кипелки

Возраст бетона в сутках

Без добавок ускорителей

С добавкой 2% HCl

С добавкой 2% HCl + 15% извести-кипелки

1

100

290

950

3

100

225

400

7

100

135

210

14

100

133

175

28

100

130

170

90

100

107

130

270

100

105

125

Таблица — обобщение комплексного эксперимента по испытанию 915 кубов с величиной ребра 5 см. Исследовались бетоны марок “70”, “110”, “200”, “250” и 350 на портландцементах активностью 246, 332, 354 и 403 кг/см2 и на шлакомагнезиальном портландцементе активностью 264 кг/см2. расход цемента колебался в пределах 220 – 290 кг/м3, величины водоцементных отношений находились в пределах от 0.56 до 0.77, осадка бетонной смеси составляла от 4 до 8 см. Известь использовалась высококальциевая, быстрогасящаяся.

Из таблицы видно, что в суточном возрасте бетон с добавкой соляной кислоты и извести-кипелки приобрел прочность, которая почти в 10 раз, в 3-х суточном – в 4 раза, а в 28-ми суточном – в 1.7 раза больше, нежели у бетона без добавок.

Такие высокие скорости твердения бетона с добавками позволяют намного раньше делать распалубовку бетонных изделий и вводить их в эксплуатацию. Сроки располубовки за счет ускорения твердения бетона сокращаются следующим образом (см. Таблица 663-2)

Таблица 663-2

Сравнительные сроки распалубовки бетона

(усредненные данные по результатам испытаний четырех различных портландцементов)

% прочности бетона от проектной марки

Бетон без добавок

Бетон с 2% HCl

Бетон с 2% HCl + 15% извести-кипелки

50

5 – 8 дней, в среднем 7 дней

3 – 5 дней, в среднем 4 дня

1.0 – 2.5 дня, в среднем 1,5 дня

70

10 – 13 дней, в среднем 12 дней

7 – 8 дней

2 – 4 дня, в среднем 3 дня

100

28 дней

12 – 18 дней, в среднем 14 дней

5 – 7 дней, в среднем 6 дней

Из таблицы видно, что совместное применение извести-кипелки и соляной кислоты может ускорить распалубовку изделий, а, следовательно, и темп работ, в 4 раза. При заводском изготовлении сборных железобетонных изделий эти добавки позволяют сократить сроки пропарки изделий, повысить оборачиваемость форм и опалубки и увеличить тем самым производительность оборудования.

Для перевода удельного веса соляной кислоты служит Таблица 663-3

Таблица 663-3

ТАБЛИЦА ПЕРЕВОДА УДЕЛЬНОГО ВЕСА И ПЛОТНОСТИ РАСТВОРОВ СОЛЯНОЙ КИСЛОТЫ

(градусы Вё) на концентрацию при 15°C

Удельный вес

Градусы Вё

Содержание НСl в %

Содержание НСl в кг на 1 л раствора

1,000

???

0,16

0,0016

1,005

0,7

1,15

0,012

1,010

1,4

2,14

0,022

1,015

2,1

3,12

0,032

1,020

2,7

4,13

0,042

1,025

3,4

5,15

0,053

1,030

4,1

6,15

0,063

1,035

4,7

7,15

0.074

1,040

5,4

8.16

0,085

1,045

6,0

9.16

0,096

1,050

6,7

10,17

0,107

1,055

7,4

11,18

0,118

1,060

8,0

12,19

0,129

1,065

8,7

13,19

0,140

1,070

9,4

14,17

0,152

1,075

10,0

15,16

0163

1,080

10,8

16,15

0,174

1,085

11,2

17,13

0 186

1,090

11,9

18,11

0,197

1,095

12,4

19,06

0209

1,100

13,0

20,01

0’220

1,105

13,6

20,97

0’232

1,110

14,2

21,92

0,243

1,115

14,9

22,86

0,255

1,120

15,4

23,82

0,267

1,125

16,0

24,78

0,279

1,130

16,5

25,75

0,291

1,135

17,1

26,70

0,302

1,140

17,7

27,66

0,315

1,145

18,0

28,14

0,321

1,145

18,3

28,61

0,328

1,150

18,8

29,57

0,340

1,152

19,0

29,95

0,345

1,155

19,3

30,55

0,353

1,160

19,8

31,52

0,366

1,163

20,0

32,10

0,373

1,165

20,3

32,49

0,379

1,170

20,9

33,46

0,391

1,171

21,0

33,65

0,394

1,175

21,4

34,42

0,404

1,180

22,0

35,39

0,418

1,185

22,5

36,81

0,430

1,190

23,0

37,23

0,443

1,195

23,5

38,16

0,456

1,200

24,0

39,11

0,469

Примечание:

1. Для соляной кислоты имеется очень простой и достаточно точный мнемонический прием для вычисления содержания количества НCl в её водных растворах. Его суть – две последние цифры удельного веса после запятой умножаем на 2 и получаем содержание кислоты в процентах (это правило справедливо для +20оС).

Например: удельный вес 1.19. Следовательно, содержание HCl будет 19 х 2 = 38%

Если удельный вес равен 1.12, HCl будет, соответственно, 24%

2. Как правило, товарная соляная кислота 38% — имеет удельный вес 1.19

6.6.3 Влияние хлоридов на иные показатели бетона

В начале 50-х годов проводились также комплексные исследования по влиянию хлоридных ускорителей, в частности соляной кислоты в дозировках от 1% до 2% совместно с 10 – 20% извести-кипелки на бетонах марки “140” и “200”. Толщину защитного слоя принимали равной 1, 2.5 и 7 см.

Коррозия арматуры и закладных деталей изучалась на образцах из арматурной стали (Ст. 3) длинной 10 см и диаметром 1 см, заделанных в образцы бетона (кубы) с ребром 15 см. Испытания проводились через 30, 90 и 365 дней твердения бетона при различных режимах его хранения: нормальном (во влажных опилках), водном, воздушном и переменном. В каждый образец бетона закладывались 2 – 3 стальных стержня, выточенных на токарном станке и обработанных ацетоном для удаления следов жира и загрязнений. Всего было испытано 199 образцов. Характер коррозии арматуры в трещинах изучался на балках 9-ти месячного возраста.

Опыты показали, что стальные стержни, заложенные в образцы бетона, изготовленного с добавкой соляной кислоты и извести-кипелки, с боковых поверхностей коррозией не затронуты, а на торцах оказались пятна и точки небольших размеров, не увеличивающиеся в течение года. Добавка в бетон одной соляной кислоты в количестве 1, 1.5 и 2% вызвала несколько большую коррозию стержней, чем одновременная добавка этой кислоты и извести-кипелки.

При этом ни различная толщина защитного слоя плотного бетона, ни различные режимы хранения образцов не оказали влияния на коррозию стержней. В железобетонных балках с раскрытыми трещинами шириной до 0.5 мм совместная добавка соляной кислоты и извести-кипелки не привела к коррозии арматуры вообще.

Если учесть, что нормативное строительное законодательство разрешает вводить в отдельные виды железобетонных изделий хлористых солей, то совместные добавки соляной кислоты и извести-кипелки, создающей большую щелочность среды, следует признать тем более допустимым.

Были проведены также испытания на сцепление арматуры с бетоном без добавок и с добавками-ускорителями. Для этого вытаскивали стержни диаметром 16 мм из бетонного куба с ребром 15 см. Было испытано 90 образцов. Опыты проводились на бетонах марки “140” и “250” при 50, 70 и 100% прочности от величины марки. Бетон без добавок приобретал такую прочность в 7, 12 и 28 суток, а бетон с добавками 2% HCl + 15% извести-кипелки – через 2, 3 и 7 суток.

Опыты показали, что при одинаковой прочности на сжатие бетона с добавками и без добавок, прочность на сцепление с арматурой бетона, содержащего добавку соляной кислоты и извести-кипелки, оказалась на 10 – 15 % выше. Причем, бетон с этими добавками набирал прочность в четыре раза быстрее, нежели такой же бетон без добавок.

Деформативные свойства бетона без добавок и с добавками изучались на 45 призмах размером 15 х 15 х 45 см, изготовлявшихся из бетона тех же замесов, что и образцы для испытания на сцепление. Призмы испытывались методом ступенчатого нагружения в 5, 10, 15 и 20 кг/см2 с выдержкой на каждой ступени по 10 минут. Деформации измерялись рычажными тензометрами, установленными по граням призм. Модули полных и упругих деформаций определялись при половинном напряжении от призменной прочности. Ползучесть бетона без добавки и с добавкой 2% соляной кислоты и 15% извести-кипелки определялась на призмах 10 х 10 х 40 см при половинном напряжении от призменной прочности. Деформации замерялись индикатором, а прочность определялась испытаниями контрольных кубов с ребром в 15 см и контрольных призм.

Результаты этих опытов показали, что деформативность бетона с 2% соляной кислоты и 15% извести-кипелки на 5 – 10% выше деформативности равнопрочного бетона без добавок. Такими же оказались и результаты определения модуля упругости бетона. Практически же, однако, это не играет роли, т.к. бетон без добавок достигает определенной прочности в четыре раза медленнее, чем бетон без добавок.

Что же касается ползучести бетона с добавкой 2% соляной кислоты и 15% извести-кипелки, то при напряжении, составляющем половину от призменной прочности, эта ползучесть в первое время была на 30 – 50% больше ползучести бетона без добавок. Однако впоследствии быстрого роста прочности бетона с добавками ползучесть его быстро уменьшается, так что конечные значения ползучести становятся примерно одинаковыми.

Прочность железобетонных балок на изгиб из бетона без добавок и с добавками-ускорителями исследовалась на балочках размера 250 х 25 х 15 см, армированных стержнями диаметром 14 мм. Для предупреждения разрушений от скалывания через каждые 7 см ставились хомуты, и отгибался средний стержень. Балки изготовлялись из бетона марки “250” при температуре 8 – 18 оС, причем часть балок с добавкой 2% соляной кислоты и 15% извести-кипелки изготавливали и хранили при температуре +2оС и +4оС.

Для бетона без добавок испытания проводили через 12 и 30 суток, а для бетона с добавками – через 1, 2, 3 и 7 суток. Испытание вели на балочном прессе с пролетом балок в 2м при девятиступенчатой загрузке двумя сосредоточенными силами, с выдержкой по 10 минут на каждой ступени. Испытание продолжали до разрушения.

Результаты испытаний показали, что разрушающая нагрузка для балок одинаковой прочности одна и та же, хотя возраст бетона без добавок и с добавками-ускорителями к моменту испытания был различным. Прогибы балок в момент разрушения у бетона с добавками оказались на 10 – 12% больше. Характерно, что прочность двух балок суточного возраста, изготовленных из бетона с добавками 2% соляной кислоты и 15% извести-кипелки и хранившихся при 2 – 4оС, составляла 70 кг/см2. Это указывает на возможность скоростного ведения работ из монолитного железобетона в условиях пониженных температур.

Вышеприведенные данные свидетельствуют, что известь-кипелка вкупе с соляной кислотой придают бетону и железобетону новые свойства, которые приобретают большую ценность при скоростном строительстве из монолитного железобетона, а также при заводском и полигонном производстве железобетонных изделий.

www.ibeton.ru

известковый бетон - это... Что такое известковый бетон?

 известковый бетон

calcestruzzo di calce

Dictionnaire technique russo-italien. 2013.

  • известковый алебастр
  • известковый мергель

Смотреть что такое "известковый бетон" в других словарях:

  • Известковый крон — – дешевая желтая краска, применяемая в малярных работах на клеевой основе и при изготовлении обоев. [Термины российского архитектурного наследия. Плужников В. И., 1995] Рубрика термина: Краски Рубрики энциклопедии: Абразивное оборудование,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Известковый шпат — – (лёгкий шпат, полевой шпат). Порошок кристаллической углекислой извести, употребляемый в клеевых покрасках вместо мела. [Термины российского архитектурного наследия. Плужников В. И., 1995] Рубрика термина: Прочие, краски Рубрики… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Бетон римский — – одно из выдающихся достижений римского зодчества. Прочный и водонепроницаемый строительный материал. Вошел в строительную практику, по видимому, с I в. н. э. Первоначально выкладывали кирпичную коробку – “опалубку”,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • БЕТОН — искусственный огнестойкий строительный материал, изготовляемый из водяного раствора вяжущего вещества, смешанного с инертными материалами (песком, гравием, щебнем, шлаком, пемзой, асбестом и др.). Смесь укладывается в прочную деревянную опалубку… …   Технический железнодорожный словарь

  • Бетон римский —     Римский бетон одно из выдающихся достижений римского зодчества. Прочный и водонепроницаемый строительный материал. Вошел в строительную практику, по видимому, с I в. н. э. Первоначально выкладывали кирпичную коробку опалубку , заполняли… …   Архитектурный словарь

  • Алебастр известковый — – полупрозрачный кристаллический известковый шпат, употреблявшийся для украшений. [Термины российского архитектурного наследия. Плужников В. И., 1995] Рубрика термина: Гипс Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Распад шлака известковый — – самопроизвольный распад шлака на куски, происходящий преимущественно в мартеновских шлаках при гидратации, «гашении» пережога извести. [Словарь основных терминов, необходимых при проектировании, строительстве и эксплуатации автомобильных… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Раствор известковый — – состоит из извести, песка и воды. Отличаются высокой долговечностью, но являются медленно твердеющим. Применяют для конструкций, работающих в надземных частях здания, испытывающих небольшое напряжение. [Словарь строительных материалов и изделий …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Раствор цементно-известковый — – смесь цемента, известкового теста, песка и воды. Применяют для возведения подземных и надземных частей здания. [Словарь строительных материалов и изделий для студентов строительных специальностей. Щукина Е. Г., Архинчеева Н. В.,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Туф известковый — – горная порода, образовавшаяся из карбоната кальция. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Туфы известковые – образовались при выделении… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ — Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и… …   Энциклопедия Кольера

polytechnic_ru_it.academic.ru

Бетон на известняке | Доставка бетона на известняке

Бетон любой марки

Доставка в день оплаты!

Газосиликатные блоки Wehrhahn!

СКИДКИ!

Подробности у менеджеров!

Газосиликатные блоки PORITEP

СКИДКИ!

Подробности у менеджеров!

Тротуарная плитка BRAER, более 100 видов

СКИДКИ!

Подробности у менеджеров!

Бордюры BRAER

СКИДКИ!

Подробности у менеджеров!

Тротуарная плитка STELLARD

СКИДКИ!

Подробности у менеджеров!

Дорожные бордюры

СКИДКИ!

Подробности у менеджеров!

Плиты перекрытия, любая длина

СКИДКИ!

Подробности у менеджеров!

Песок горный, речной, щебень, известняк, гранит

Доставка в день оплаты, скидки от объема, возможна отсрочка оплаты

Бетон на известняке Часто можно увидеть, что бетон имеет известковый наполнитель. Известковый щебень является наиболее дешевым и имеет достаточно высокую морозостойкость. Впрочем, негативной стороной является его относительно небольшая прочность. Бетон, который содержит известковый наполнитель, может быть марок м-100 до м-300. Это максимальный показатель для такого щебня. Такого рода щебень можно использовать при укладке полов, ленточных фундаментов и прочих довольно простых строительных работ (М-150). М-250 и М-300 подойдет для строительства фундаментов, лестничных клеток и заборов.

Известковый щебень не подходит для изготовления бетона выше марки М-350, по причине его низкой прочности. В таком случае используется гравий или гранит. Вообще, бетон – довольно выгодный строительный материал. Он относительно недорогой, но имеет целый список преимуществ. Именно поэтому, без него не обходится ни одна стройка.

Бетон Стоимость за м3 (руб) марка класс
М100 В7,5 3 400
М150 В10 3 500
М200 В15 3 600
М250 В20 3 800
М300 В22,5 4 000

Известковая бетонная смесь в нашей компании происходит автоматически и с использованием новейшей техники. Это позволяет достигнуть только лучшего качества в самые сжатые сроки. Стоимость бетона будет отличаться в зависимости от марки, и, конечно, в зависимости от цели назначения. Бетон для ленточного фундамента будет разительно отличаться от бетона для строительства дамбы.

В зависимости от того, какие цели Вы ставите перед собой, различается и характеристика бетона. Тяжелый носитель будет использовать добавки, которые повышают термостойкость бетона. Сегодня известковый щебень довольно активно используется в соединении с бетоном. Ни один частный строитель сегодня не может обойтись без этой необходимой составной части бетонной смеси.

www.beton-71.ru


Смотрите также