11.2 Определение прочности бетона на осевое растяжение. Осевое растяжение бетона


11.2 Определение прочности бетона на осевое растяжение

По прочности на осевое растяжение тяжелые и легкие бетоны подразделяют на классы: Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt3,2; Вt3,6; Вt4,0 или марки: Рt5; Рt10; Рt20; Рt25; Рt30; Рt35; Рt40; Рt45; Рt50. Они назначаются для бетонов, применяемых в резервуарах для воды, внецентренно нагруженных колонн и др.

Оборудование и материалы: проба бетонной смеси, комплект форм для изготовления образцов-восьмерок или призм, кельма, секундомер, лабораторная виброплощадка, стальной стержень диаметром 16 мм. Камера для хранения образцов, разрывная машина, мерная линейка или штангенциркуль.

Проведение испытаний. Предел прочности на осевое растяжение определяется на образцах-восьмерках с размером рабочего сечения средней части 70×70, 100×100, 150×150, 200×200 мм (Рисунок3.11.1) или призм квадратного сечения размером 100×100×400, 150×150×600 и 200×200×800 мм. Методика изготовления и выдерживания образцов та же, что и при испытании на сжатие.

Испытание проводят на разрывной машине. Образец закрепляют так, чтобы его геометрическая ось проходила через центр шарниров захватов. Напряжение в образце при нагружении до его разрушения должно возрастать с постоянной скоростью (0,05±0,02) МПа в секунду.

Предел прочности бетона на осевое растяжение определяют по формуле:

где – предел прочности бетона на осевое растяжение, МПа; Р- разрушающая нагрузка, Н;F- средняя площадь рабочего сечения образца, м2; β- масштабный коэффициент прочности бетона для перехода к образцам базового размера с рабочим сечением 150×150 мм. Определяется опытным путем или приблизительно принимается по Таблице11.2.

Рисунок 11.1- Образцы восьмерки

Прочность бетона на растяжение вычисляют как среднее арифметическое двух наибольших значений результатов испытаний трех образцов.

Результаты испытаний записывают в Таблицу11.4.

Таблица 11. 4Определение прочности бетона на осевое растяжение

Показатель

Номер образца

1

2

3

Размеры образца:

a, см

b, см

Площадь поперечного сечения F, м2

Разрушающая нагрузка Р, Н

Предел прочности при растяжении отдельного образца , МПа

Среднее значение предела прочности из двух наибольших значений, МПа

11.3 Определение прочности бетона на растяжение при изгибе

По прочности на растяжение при изгибе бетон подразделяют на классы: Вtb0,4; Вtb0,8; Вtb1,2; Вtb1,6; Вtb2,0; Вtb2,4; Вtb2,8; Вtb3,2; Вtb3,6; Вtb4,0; Вtb4,4; Вtb4,8; Вtb5,2; Вtb5,6; Вtb6,0; Вtb6,4; Вtb6,8; Вtb7,2; Вtb8; или маркиРtb5; Рtb10; Рtb15; Рtb20; Рtb25; Рtb30; Рtb35; Рtb40; Рtb45; Рtb50; Рtb55; Рtb60; Рtb65; Рtb70; Рtb75; Рtb80; Рtb85; Рtb90; Рtb100. Их назначают, например, при проектировании бетонов для дорожных и аэродромных покрытий.

Рисунок 11.2 Схема испытания бетонных образцов на растяжение при изгибе: 1-траверса, 2-испытательная призма, 3- неподвижная опора, 4- подвижная опора

Оборудование и материалы: проба бетонной смеси, формы для изготовления образцов, устройство для испытания бетона на растяжение при изгибе, гидравлический пресс, стальной стержень диаметром 16 м, кельма, секундомер. Лабораторная виброплощадка, камера для хранения образцов.

Проведение испытаний. Прочность бетона на растяжение при изгибе определяют испытанием образцов – призм в возрасте 28 сут. Размер образов зависит от наибольшей крупности заполнителя и принимается: 100×100×400 мм – при D=20 мм и менее, 150×150×600 мм - при D=40 мм и 200×200×800 мм – при D=70 мм.

Методика изготовления образцов такая же. Как и при испытании бетона на сжатие. Освобождение образцов от форм следует производить не ранее 4 суток после их изготовления.

Испытание образцов выполняется на гидравлическом прессе по схеме, приведенной на Рисунке 11.2.

Нагрузки на образец-призму должны передаваться перпендикулярно слою укладки бетонной смеси со скоростью (0,5Δ0,02) МПа в секунду до разрушения образца. Образец должен разрушаться в средне трети пролета, если же в другом месте. То этот результат не учитываю при определении средней прочности. Предел прочности отдельного образца Rtb, МПа вычисляют по формуле:

Rtb=β/×Pl/(bh3)

где Rtb - предел прочности на растяжение при изгибе, МПа; P - разрушающая нагрузка, Н; l- расстояние между опорами, м; b- ширина призмы, м; h- высота призмы, м; β/ - масштабный коэффициент для перехода к образцам базового размера сечением 150х150 мм β/=βγ. Значение β принимается по таблице 2, а коэффициент γ по таблице 6.

Результаты испытания записывают в таблицу 11.5.

Для перехода от прочности бетона на растяжение при изгибе к прочности на осевое растяжение служат коэффициенты, приведенные в Таблице11.5.

Таблица 11.5Определение прочности бетона на растяжение при изгибе

Показатель

Номер образца

1

2

3

Ширина призмы b, м

Высота призмы h,м

Расстояние между опорами l, м

Разрушающая нагрузка Р, Н

Предел прочности на растяжении при изгибе отдельного образца Rtb, МПа

Среднее значение предела прочности Rtb, МПа

Таблица 11.6Минимальные значения переходных коэффициентов γ

Марки (класс) тяжелого бетона на осевое растяжение

Коэффициент перехода от прочности на растяжение при изгибе к прочности на осевое растяжение γ

Pt20(Bt1,6) и ниже

0,58

Pt25(Bt2,0)

0,57

Pt30(Bt2,4)

0,55

Pt35(Bt2,8)

0,52

Pt40(Bt3,2) и выше

0,50

studfiles.net

ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

ВЫСОКОПРОЧНЫЙ БЕТОН

Сопротивление бетона осевому растяжению значительно меньше, чем сопротивление сжатию, и характеризуется нормальным сцеплением его составляющих. Малая проч­ность бетона при растяжении объясняется неоднородностью его структуры и нарушением сплошности бетона, что спо­собствует развитию концентраций напряжений, особенно при действии растягивающих усилий.

Неоднородное строение бетона — одна из главных при­чин большого рассеяния результатов механических испы­таний этого материала, что сказывается при эксперимен­тальном определении величины растяжения гораздо силь­нее, чем при определении прочности на сжатие.

Существенная разница между временным сопротивлением разрыву и временным сопротивлением сжатию для обычных тяжелых бетонов свидетельствует о довольно большом раз­бросе таких величин [84]. Этот разброс объясняется раз­личным влиянием факторов на растяжение и сжатие. Так, например, для обычных бетонов установлено [84], что с ростом В/Ц сопротивление разрыву понижается, однако в меньшей степени, чем сопротивление сжатию.

Учитывая, что при растяжении основную роль играет цементный камень, небезынтересно привести данные Н. И. Слесаревой [41 ] о результатах испытания на растяже­ние двух партий образцов из цементного камня. Расход це­мента для приготовления [образцов первой партии состав­лял 500 кг, а второй — 400 кг. Количество воды изменялось и В/Ц соответственно колебалось в пределах 0,30—0,40. Как в первой, так и во второй партиях, с увеличением В/Ц прочность бетона образцов падала в 1,4 раза.

Из опытов [41] также следует, что с увеличением со­держания песка в бетонной смеси прочность затвердев­шего бетона на растяжение существенно снижается.

На прочность при растяжении влияет гранулометриче­ский состав заполнителя и, в частности, вид зерен. Напри­мер, гравий и песок с округленными гладкими поверхно­стями способствуют снижению прочности на разрыв.

С увеличением марки бетона возрастает временное со­противление разрыву. Высокопрочные бетоны, как правило, приготовляемые на бетонных смесях с низкими В/Ц и на чистых кондиционированных заполнителях в виде щебня и песка, имеют повышенную плотность, следовательно, у них меньше разброс в показаниях прочности как при сжа­тии, так и при растяжении.

Временное сопротивление растяжению бетона опре­деляют на образцах путем осевого растяжения и растяжения при изгибе или при раскалывании.

Истинный предел прочности при растяжении определя­ют испытанием образцов на осевое растяжение. Для этого берут образцы с рабочим участком в виде призмы достаточ­ной длины, чтобы обеспечивалось равномерное распреде­ление внутренних усилий в его средней части. Концевые участки таких образцов обычно расширены для крепления в захватах. Места перехода от призменной части к расширен­ным должны быть выполнены плавно, чтобы в них не воз­никали концентраторы напряжений.

При испытании высокопрочные образцы требуется осо­бенно тщательно центрировать, так как с увеличением проч­ности их повышается и хрупкость. В последнее время пред­ложено несколько способов крепления образцов и центри­ровки в испытательной машине. Одним из наиболее удачных представляется так называемое самоцентрирующее кре­пление, предложенное М. М. Израелитом [39].

При испытании образцов-цилиндров или образцов - призм, концевые участки которых не расширены, приме­няют захваты в виде приклеенных к торцам образца метал­лических плит. В этом случае также может быть обеспечено достаточно хорошее центрирование образцов.

Для определения величины временного сопротивления растяжению R р в свое время Фере предложил зависимость в виде

#р =0,5 Я2/3, (III. 2)

Которая была получена для бетонов низких марок. В на­стоящее время эта зависимость распространяется и на бе­тоны марки 600.

Зависимость предела прочности при растяжении от пре­дела прочности при сжатии высокопрочных бетонов уста­новлена в работе [177]. Испытания на растяжение осевое, при изгибе и раскалывании проводились на образцах избетона марок 600—1200, а также на образцах из бетонов обычных марок. Образцы испытывали в возрасте от 3 до 360 суток. Бетоны готовили на цементах марок 500—800 (по ГОСТ 310—41) с различным химическим и минерало­гическим составами. В ряде партий образцов [67, 87] был использован особо быстротвердеющий цемент ОБТЦ.

/—Булгакова и Русановой [23]; 2 —Гоннермана и Шумана [141]; З — Пи­санко и Голикова [67]; 4 — Сытника и Иванова [87]; 5 —Слесаревой [41]; а —по уравнению кривой регрессии; б—по формуле (III.2)

Расход цемента составлял от 360 кг [67] до 685 кг [87] на 1 м3 бетона.

В качестве заполнителя применяли гранитный или ба­зальтовый щебень, а также горные или речные пески с раз­личными модулями крупности. Расход щебня и песка на I м3 бетонной смеси был принят такой же, как и для из­готовления образцов, использованных при определении ко­эффициента призменной прочности /Сп. п - Значения В/Ц Колебались от 0,26 [67] до 0,6 [161]. Для увеличения пла­стичности бетонной смеси применяли добавку 0,2% ССБ от веса цемента.

Анализ полученных результатов [177] позволил по­строить корреляционную зависимость i? p = F(R) в виде кривой а (рис. 23). Коэффициент корреляции г = 0,96 свидетельствует о достаточной устойчивости этой зависи­мости, которая совпадает с формулой Фере (см. рис. 23, кривая б). Наилучшее совпадение кривых а и б наблюдается у бетонов марок 600—1200,

На зависимости Rp = f(R) мало сказываются такие фак­торы, как изменение состава бетонной смеси, размеры и фор­ма образца, их возраст, а также способы приготовления и укладки бетонной смеси.

Кольца колодцев были и остаются очень востребованным строительным материалом. К слову, кольца колодцев приобретают не только те, чья деятельность связана с водоснабжением и канализацией, но и телефонисты, Интернет-провайдеры и, конечно …

Полученное выражение (V.15) дает возможность сфор­мулировать общее положение о характере зависимости меж - ду упругими и прочностными свойствами тяжелого бето­на. Особенность этой связи заключается в том, что оца не является …

Об усадке тяжелого бетона имеется не меньше экспе­риментальных данных, чем о его ползучести. Попытки- использовать эти данные для получения общих количест­венных закономерностей явления содержатся в ряде работ. При оценке возможной …

msd.com.ua

2.1. Прочность бетона при сжатии и растяжении.

2.2. Арматура для железобетонных конструкций.

2.1. Прочность бетона при сжатии и растяжении.

Структура бетона, обусловленная неоднородностью состава и различием способов приготовления, оказывает существенное влияние на все физико-механические свойства.

Прочность бетона зависит от ряда факторов:

 технологические факторы: состав, водоцементное отношение, свойства исходных материалов;

 возраст и условия твердения;

 форма и размеры образца;

 вид напряженного состояния и длительность воздействия.

Бетон имеет разное временное сопротивление при сжатии, растяжении и срезе.

Прочность бетона на осевое сжатие.

Различают кубиковую (R)и призменную(Rb)прочность бетона на осевое сжатие. При осевом сжатии кубы разрушаются вследствие разрыва бетона в поперечном направлении. При этом наблюдается явно выраженный эффект обоймы - в кубе у поверхностей, соприкасающихся с плитами пресса (зоны передачи усилий), возникают силы трения, направленные внутрь куба, которые препятствуют свободным поперечным деформациям. Если этот эффект устранить, то временное сопротивление сжатию куба уменьшится примерно вдвое. Опытами установлено, что прочность бетона также зависит от размера образца. Это объясняется изменением влияния эффекта обоймы на деформации бетона с изменением размеров и формы образца (рис. 4).

Поскольку реальные железобетонные конструкции по форме отличаются от кубов, в расчете их прочности основной характеристикой бетона при сжатии является призменная прочность Rb- временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах со стороной основанияаи высотойhпоказали, что призменная прочность бетона меньше кубиковой и она уменьшается с увеличением отношенияh/a. Влияние сил трения на торцах призмы уменьшается с увеличением ее высоты и при отношенииh/a= 4 значениеRbстановится почти стабильным и равным примерно0.75R.

Прочность бетона на осевое растяжение.

Зависит от прочности цементного камня на растяжение и сцепления его с зернами заполнителя. Согласно опытным данным, прочность бетона на растяжение в 10 20 раз меньше, чем при сжатии. Повышение прочности бетона на растяжение может быть достигнуто увеличением расхода цемента, уменьшением W/C, применением щебня с шероховатой поверхностью.

Временное сопротивление бетона осевому растяжению (МПа) можно определить по эмпирической формуле:

3___

Rbt = 0.233 R2

Вследствие неоднородности бетона эта формула дает лишь приблизительные значения Rbt, точные значения получают путем испытания на разрыв образцов в виде восьмерки.

Прочность бетона на срез и скалывание.

Срез представляет собой разделение элемента на две части по сечению, к которому приложены перерезывающие силы. При этом основное сопротивление срезу оказывают зерна крупных заполнителей, работающих, как шпонки. Временное сопротивление срезу можно определить по эмпирической формуле Rsh  2Rbt;

Сопротивление бетона скалыванию возникает при изгибе железобетонных балок до появления в них наклонных трещин. Скалывающие напряжения по высоте сечения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1.5 2 раза большеRbt.

studfiles.net

Прочность бетона на осевое растяжение. Прочность бетона на растяжение при изгибе

→ Бетонные смеси и бетоны

Прочность бетона на изгиб, растяжение и раскалывание

Прочность бетона на изгиб определяют на образцах-призмах квадратного сечения 100×100, 150×150 или 200×200мм, длиной в четыре раза больше размера сечения, т.е. соответственно 400, 600 и 800 мм.

Образец-призму (рис. 11.5) устанавливают в горизонтальное положение на две симметрично расположенные шарнирные опоры, укрепленные на нижней плите пресса. Одна из опор подвижная, другая - неподвижная. Расстояние между опорами (испытательный пролет) равно трехкратному размеру сечения призмы, т. е. 1 = За. На призму сверху устанавливают две шарнирные опоры, также симметричные относительно середины и расположенные одна от другой на расстоянии, равном размеру сечения: а = 1/3.

Рис. 11.5. Устройство для испытания бетона на изгиб:1 – каток; 2 – качающийся цилиндрический шарнир; 3 – шаровой шарнир; 4 - траверса

На опоры укладывают стальную траверсу, в центре верхней грани которой укреплен шаровой шарнир. Через шарнир нагрузка Р от верхней плиты пресса передается на траверсу, а от нее через опоры - на испытываемую призму в виде двух сосредоточенных сил, каждая из которых равна Р/2 и приложена на расстоянии 1/3 одна от другой и от опор призмы.

При этом нужно следить, чтобы сама призма на опоры и опоры опирались плотно по всей ширине, все опоры были перпендикулярны оси испытуемого образца, а оси призмы и траверсы находились в одной вертикальной плоскости.

При испытаниях на изгиб прочность бетона вычисляют как среднее арифметическое из значений RpH для всех образцов данной серии, прочность которых отличается не более чем на 15%, а разрушение произошло в средней трети испытательного пролета. При испытаниях призмы размером 200×200×800 мм «эталонную» прочность (прочность для образца размером 150х х 150×600 мм) определяют умножением полученных значений на коэффициент 1,0, а для призмы размером 100×100×400 мм - на 0,95.

Прочность бетона на растяжение определяют двумя способами: прямым (испытание на осевое растяжение) и косвенным; (испытание на раскалывание).

На осевое растяжение испытывают образцы квадратного сечения с утолщениями к концам, так называемые «восьмерки» (рис. 11.6).

При растяжении образец разрушается (разрывается) в средней, более тонкой рабочей части, которая может иметь сечение 100×100, 150×150 или 200×200 мм. В крайних утолщенных частях сечение соответственно составляет 150×150, 250×250 или 360×360 мм. Длина рабочей части образца в три раза, а общая длина образца в семь раз больше размера рабочего сечения. В утолщенных частях расположены арматурно-монтажные петли из стали диаметром 6 мм, выступающие за торцы образца и предназначенные для закрепления в разрывной машине.

На раскалывание испытывают такие же кубы или цилиндры, как и при испытании на сжатие (кубы должны иметь на двух противоположных ребрах фаски шириной 14 мм). Образцы устанавливают в пресс по схеме (рис. 11.7). Куб опирается ребром так, что усилие сжатия направлено вдоль оси, а цилиндр опирается по образующей (усилие сжатия направлено по диаметру).

Рис 11.6. Образец-восьмерка для испытания бетона на растяжение

Рис. 11.7. Схемы испытания бетона на раскалывание:а - образцов-кубов; б - образцов-цилиндров; 1 - образец; 2 - полуцилиндр; 3 - плита пресса

Структура бетона, обусловленная неоднородностью состава и различием способов приготовления, оказывает существенное влияние на все физико-механические свойства.

Прочность бетона зависит от ряда факторов:

 технологические факторы: состав, водоцементное отношение, свойства исходных материалов;

 возраст и условия твердения;

 форма и размеры образца;

 вид напряженного состояния и длительность воздействия.

Бетон имеет разное временное сопротивление при сжатии, растяжении и срезе.

Прочность бетона на осевое сжатие.

Различают кубиковую (R ) и призменную (R b ) прочность бетона на осевое сжатие. При осевом сжатии кубы разрушаются вследствие разрыва бетона в поперечном направлении. При этом наблюдается явно выраженный эффект обоймы - в кубе у поверхностей, соприкасающихся с плитами пресса (зоны передачи усилий), возникают силы трения, направленные внутрь куба, которые препятствуют свободным поперечным деформациям. Если этот эффект устранить, то временное сопротивление сжатию куба уменьшится примерно вдвое. Опытами установлено, что прочность бетона также зависит от размера образца. Это объясняется изменением влияния эффекта обоймы на деформации бетона с изменением размеров и формы образца (рис. 4).

Поскольку реальные железобетонные конструкции по форме отличаются от кубов, в расчете их прочности основной характеристикой бетона при сжатии является призменная прочность R b - временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах со стороной основанияа и высотойh показали, что призменная прочность бетона меньше кубиковой и она уменьшается с увеличением отношенияh/a . Влияние сил трения на торцах призмы уменьшается с увеличением ее высоты и при отношенииh/a = 4 значениеR b становится почти стабильным и равным примерно0.75R .

Прочность бетона на осевое растяжение.

Зависит от прочности цементного камня на растяжение и сцепления его с зернами заполнителя. Согласно опытным данным, прочность бетона на растяжение в 10 20 раз меньше, чем при сжатии. Повышение прочности бетона на рас

strojdizain.ru

Прочность бетона при растяжении

Бетон плохо работает на растяжение.

Прочность при растяжении составляет 7—10% от его прочности при сжатии. Это (в сочетании с низкой растяжимостью) — один из двух главных недостатков тяжелого бетона (второй — высокая плотность).

Прочность на осевое растяжение наиболее сложно определяется. Один из вариантов — растяжение образцов-восьмерок (призм с утолщениями на концах) на разрывной машине.

Прочность на растяжение при изгибе определяется на призмах 100х 100x400 мм; 150х 150x600 мм и т. д. Образцы испытываются при действии двух сил, приложенных в 1/3 пролета. Разрушение бетона происходит от растягивающих напряжений, достигающих наибольших значений в нижнем слое растянутой зоны.

Прочность на растяжение при раскалывании. В связи со сложностью определения прочности на чистое растяжение и растяжение при изгибе широкое распространение получило определение прочности бетона на растяжение при раскалывании (иногда этот метод, предложенный Ф. Карнейро, называют бразильским). Для него используются стандартные образцы-кубы, раскалываемые на прессах при помощи стальных или фанерных прокладок.

Метод стандартизирован. Прочность при раскалывании несколько выше, чем при чистом растяжении, в среднем на 30%.

Для обычных бетонов, даже в изгибаемых конструкциях, прочность бетона на растяжение не нормируется. Растягивающие напряжения в них воспринимаются арматурой. В бетоне растянутой зоны в связи с его малой растяжимостью допускаются и образуются трещины. Но ограничивается ширина их раскрытия (в пределе — до 0,3 мм).

В то же время в ряде конструкций: дорожные покрытия, резервуары, гидротехнические сооружения, — трещины недопустимы. Для них прочность на растяжение приобретает важное значение и может являться основной нормируемой характеристикой.

Но степень их влияния изменяется. Она в меньшей степени зависит от В/Ц, а также от возраста бетона (после первого месяца твердения).

В то же время прочность при растяжении больше зависит от сцепления цементного камня с заполнителями. Поэтому повышение степени шероховатости и чистоты поверхности зерен, замена гравия на щебень оказывают на нее значительное влияние. Повышается прочность при растяжении при уменьшении НК заполнителей, так как поверхность их сцепления с цементным камнем увеличивается и становится при этом менее дефектной. Так, мелкозернистые бетоны имеют большую прочность при растяжении, чем обычные (при той же прочности при сжатии).

www.uniexo.ru

Определение прочности бетона на осевое растяжение

Производство Определение прочности бетона на осевое растяжение

просмотров - 38

По прочности на осœевое растяжение тяжелые и легкие бетоны подразделяют на классы: Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt3,2; Вt3,6; Вt4,0 или марки: Рt5; Рt10; Рt20; Рt25; Рt30; Рt35; Рt40; Рt45; Рt50. Οʜᴎ назначаются для бетонов, применяемых в резервуарах для воды, внецентренно нагруженных колонн и др.

Оборудование и материалы: проба бетонной смеси, комплект форм для изготовления образцов-восьмерок или призм, кельма, секундомер, лабораторная виброплощадка, стальной стержень диаметром 16 мм. Камера для хранения образцов, разрывная машина, мерная линœейка или штангенциркуль.

Проведение испытаний. Предел прочности на осœевое растяжение определяется на образцах-восьмерках с размером рабочего сечения средней части 70×70, 100×100, 150×150, 200×200 мм (Рисунок3.11.1) или призм квадратного сечения размером 100×100×400, 150×150×600 и 200×200×800 мм. Методика изготовления и выдерживания образцов та же, что и при испытании на сжатие.

Испытание проводят на разрывной машинœе. Образец закрепляют так, чтобы его геометрическая ось проходила через центр шарниров захватов. Напряжение в образце при нагружении до его разрушения должно возрастать с постоянной скоростью (0,05±0,02) МПа в секунду.

Предел прочности бетона на осœевое растяжение определяют по формуле:

где – предел прочности бетона на осœевое растяжение, МПа; Р- разрушающая нагрузка, Н; F- средняя площадь рабочего сечения образца, м2; β- масштабный коэффициент прочности бетона для перехода к образцам базового размера с рабочим сечением 150×150 мм. Определяется опытным путем или приблизительно принимается по Таблице11.2.

Рисунок 11.1- Образцы восьмерки

Прочность бетона на растяжение вычисляют как среднее арифметическое двух наибольших значений результатов испытаний трех образцов.

Результаты испытаний записывают в Таблицу11.4.

Таблица 11. 4Определœение прочности бетона на осœевое растяжение

Показатель Номер образца
Размеры образца:      
a, см      
b, см      
Площадь поперечного сечения F, м2      
Разрушающая нагрузка Р, Н      
Предел прочности при растяжении отдельного образца , МПа      
Среднее значение предела прочности из двух наибольших значений , МПа      

Читайте также

  • - Определение прочности бетона на осевое растяжение

    По прочности на осевое растяжение тяжелые и легкие бетоны подразделяют на классы: Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt3,2; Вt3,6; Вt4,0 или марки: Рt5; Рt10; Рt20; Рt25; Рt30; Рt35; Рt40; Рt45; Рt50. Они назначаются для бетонов, применяемых в резервуарах для воды, внецентренно нагруженных колонн и др. ... [читать подробенее]

  • oplib.ru