Особенности заливки бетона при минусовой температуре. Перегрев бетона


при какой можно, нельзя бетонировать

Температурный режим при бетонировании – один из основных критериев качественного выполнения работ согласно нормам СНиП и ГОСТ. Учитывая переменчивость климатических условий и необходимость производства работ в межсезонье, а также в холодное время года, контроль температуры приобретает особую актуальность. Мы рассмотрим, при какой температуре бетонировать лучше всего, а также коснемся способов искусственного обеспечения оптимальных условий.

Температура бетонирования – важный параметр нормального протекания реакции твердения смеси.

Температура бетонирования – важный параметр нормального протекания реакции твердения смеси.

Температурные режимы при бетонных работах

Физико-химические процессы в бетоне

Твердение бетонного камня происходит вследствие химического взаимодействия его компонентов.

Твердение бетонного камня происходит вследствие химического взаимодействия его компонентов.

Бетон представляет собой смесь из четырех основных компонентов, которые обеспечивают ему необходимые характеристики. Назначение и участие каждого из этих компонентов в тех или иных процессах рассмотрены в таблице:

Компонент Назначение и процессы
Цемент Необходим для связывания наполнителей и образования цементного камня. Участвует в реакции гидратации совместно с водой, при этом выделяется тепло в окружающее пространство
Вода Является несущей средой для смешивания и равномерного распределения компонентов смеси по объему, а также она необходима для затворения цемента. Участвует в реакции гидратации совместно с цементом для образования цементного камня
Песок Является мелким заполнителем, который необходим для заполнения пустот между зернами щебня. Участвует в процессе перераспределения нагрузок от внутренних напряжений при твердении цементного камня, играет роль мелкозернистого каркаса и защищает материал от образования трещин
Щебень Является крупным заполнителем и используется для экономии цемента, а также для создания крупнозернистого каркаса, препятствующего растрескиванию смеси при твердении. Участвует в процессе распределения нагрузок от внутренних напряжений

Как видим, основные компоненты, обеспечивающие протекание реакции твердения (гидратации) — это вода и цемент.

Реакция взаимодействия воды и цемента протекает с выделением тепла.

Реакция взаимодействия воды и цемента протекает с выделением тепла.

Основой образования бетонного камня является реакция гидратации цемента, при которой сначала образуется цементное молоко, которое затем достаточно быстро схватывается и образует монолитную камнеподобную структуру. Песок и щебень здесь нужны для обеспечения физических процессов внутри смеси, связанных с перераспределением нагрузок и внутренних напряжений.

Бетон, приготовленный своими руками, твердеет по такому же принципу.

Бетон, приготовленный своими руками, твердеет по такому же принципу.

Важно!Одним из условий нормального протекания любой химической реакции является соответствие условий температурному режиму, при котором возможно взаимодействие ингредиентов.

Оптимальный режим

На фото бетонировка происходит в летнее время, которое лучше всего подходит для этого вида работ.

На фото бетонировка происходит в летнее время, которое лучше всего подходит для этого вида работ.

Реакция гидратации цемента неприхотлива и позволяет определить, при какой температуре можно бетонировать, в достаточно широком диапазоне – от 0 до 90 градусов Цельсия. Однако на практике для обеспечения адекватных условий твердения и возможности выполнения работ этот диапазон сокращается от 4 до 30 градусов.

Важно!Оптимальной температурой бетонирования считается режим, при котором она не опускается ниже +15 градусов и не поднимается выше +25.

Укладка в помещении является наиболее оптимальной.

Укладка в помещении является наиболее оптимальной.

Очевидно, что достичь таких условий можно только при стабильной летней погоде или в помещении. Именно поэтому при проведении наружных работ укладывать бетон всегда стараются в летнее время при сухой и не сильно жаркой погоде.

Нормальный режим

Строительство крупных объектов часто не укладывается в рамки одного сезона.

Строительство крупных объектов часто не укладывается в рамки одного сезона.

Практика строительства такова, что в реальных условиях далеко не всегда удается организовать работы таким образом, чтобы всегда соблюдались оптимальные условия бетонирования. Поэтому чаще всего приходится говорить о нормальном режиме, при котором возможна работа как в теплое, так и в холодное время года.

Холодным принято считать такое время, при котором температура воздуха опускается ниже +10 градусов. Сразу следует указать, при какой температуре нельзя бетонировать: без дополнительного обогрева нижний предел температуры составляет +4 градуса, с натяжкой можно сказать, что крайним значением является 0 градусов, хотя инструкция такие натяжки исключает.

Межсезонье – не лучшее время для работ.

Межсезонье – не лучшее время для работ.

Важно!Межсезонье является опасным временем, так как для него характерны частые и непредсказуемые перепады температур.Это чревато повторяющимися замерзаниями и оттаиваниями, при которых материалу наносится особенно ощутимый урон.

Также следует учитывать, что для набора марочной прочности бетонное изделие должно простоять как минимум 28 дней при нормальной температуре, а если температура понижена, этот срок заметно возрастает. Поэтому если вы планируете сразу после заливки фундамента выполнять кладку стен, рекомендуем вам бетонировать не позже конца августа – середины сентября.

Работа в жаркое время также накладывает определенные условия: слишком активное испарение влаги приводит к ее недостатку и понижению качества изделия, а также влечет появление поверхностных трещин.

Для того чтобы избежать таких последствий, необходимо ухаживать за бетоном после укладки:

  • увлажнять его;
  • защищать от сухого ветра;
  • прямых солнечных лучей.
Уход за бетоном особенно необходим в жаркое время.

Уход за бетоном особенно необходим в жаркое время.

Во время дождя следует следить за тем, чтобы в свежий бетон не попадало много воды, иначе будет нарушено водоцементное отношение и материал потеряет прочность. Для этого опалубку после заливки накрывают водонепроницаемой пленкой или другим материалом, препятствующим попаданию воды.

Во время дождя свежий бетон накрывают пленкой.

Во время дождя свежий бетон накрывают пленкой.

Важно!Следует помнить, что перегрев не менее опасен, чем переохлаждение, так как ведет к слишком быстрому твердению, потере пластичности, растрескиванию и, как результат, потере качества готовой конструкции.

Зимнее бетонирование

Укладку бетона производят также и зимой.

Укладку бетона производят также и зимой.

Бетонирование при низких температурах – это особая практика, которая требует применения специальных технологий и добавок. Как мы уже говорили, температура не должна опускаться ниже +4 градусов, но часто производственный процесс исключает возможность зимнего перерыва в работе.

В этом случае применяют обогрев бетона.

Это можно сделать несколькими способами:

  • Методом термоса. Здесь используется тепло, выделяемое реакцией гидратации цемента, для удержания которого смесь заливают в утепленные опалубки, которые дополнительно укрывают тепляками и прочими защитными средствами. Годится для массивных крупных объектов;
  • Методом подогрева паром или горячим воздухом. Вокруг объекта строят деревянный или брезентовый тепляк, в который подают пар, теплый воздух или устанавливают калорифер;
  • Методом подогрева смеси электродами или специальными греющими кабелями (ПНСВ). По заранее рассчитанной схеме в бетонную массу вводят специальные нагревательные элементы, которые позволяют преобразовать электрическую энергию в тепло;
  • Методом прогрева с помощью электрических матов или инфракрасных излучателей. На поверхность стяжки укладывают нагревательные маты или ИК-излучатели, которые не дают смеси промерзнуть.
Термоэлектроматы позволяют работать зимой.

Термоэлектроматы позволяют работать зимой.

Наиболее важно не дать бетону замерзнуть в течение первых трех дней, за которые он набирает до 70% прочности. Дальше мороз уже не опасен, он лишь замедляет процесс набора прочности, который после оттаивания продолжится.

Прогрев производят до температур от +10 до +30 градусов. Выходить за эти рамки нежелательно.

Греющий кабель укладывают прямо в опалубку.

Греющий кабель укладывают прямо в опалубку.

Важно!Если смесь не набрала 50% прочности, то после оттаивания она разуплотняется и марочной прочности не набирает.

Кроме обогрева можно применять химические добавки, которые не дают воде замерзать и ускоряют процесс твердения.

Это может быть:

  • хлористый натрий;
  • хлористый кальций;
  • пота;
  • и нитрат натрия.

Также желательно использовать высокоактивные марки цемента.

Устройство тепляка – старый, но проверенный способ.

Устройство тепляка – старый, но проверенный способ.

Следует учитывать, что резка железобетона алмазными кругами и алмазное бурение отверстий в бетоне должны производиться после набора прочности, а не по замерзшему материалу. Также имейте в виду, что цена работ возрастает на 30 – 40%.

Важно!Для успешного зимнего бетонирования лучше применять комплекс мер, в числе которых будет прогрев, применение химических добавок и высокоактивного цемента.

Вывод

Правильный температурный режим является определяющим условием для нормального твердения бетонной смеси и набора конструкцией ожидаемой прочности. Существует множество методов поддержания такого режима, узнать о которых подробнее можно с помощью видео в этой статье.

masterabetona.ru

Заливка бетона при минусовой температуре без прогрева: методы и рекомендации

Бетонный раствор один из наиболее востребованных строительных материалов. Но при снижении температуры ниже нуля, его затвердевание становится проблематичным. Часто с этим сталкиваются при заливке фундаментов осенью и зимой. Специалисты утверждают, что заливка бетона при минусовой температуре возможна и без прогрева, но для этого выполняются определенные требования, обеспечивающие правильное затвердевание бетонной смеси.

Зимнее бетонирование

Влияние температуры на твердение бетона

Бетон представляет собой смесь из наполнителей – песка и щебня, скрепленных между собой застывшим цементным молочком. При реакции с водой происходит его гидратация, после чего он затвердевает с одновременным испарением воды. Критическая прочность при нормальной температуре набирается в течение одних или полутора суток, в зависимости от влажности окружающего воздуха.

Оптимальной для протекания реакции является температура около 20⁰С, раствор набирает расчетную прочность в течение 28 суток. Чтобы в первые дни вода не улетучивалась слишком быстро, бетон покрывают гидроизоляцией.

При 5⁰С застывание состава замедляется в 2 раза, а при нулевой температуре гидратация прекращается. Если до этого критическая прочность бетона уже набрана, с ним ничего не случится, он наберет прочность после потепления. Если же до замерзания набор критической прочности не произошел, материал не наберет нужных показателей, и будет крошиться после размораживания. В этом случае заливать любую марку бетона при минусовой температуре нельзя.

Методики бетонирования в зимних условиях

Главным условием правильной заливки бетона при отрицательных температурах является сохранение теплоты, достаточной для обеспечения набора критической прочности. Популярные методы укладки строительных растворов в зимний период:

  • Предварительный прогрев изготавливаемой смеси;
  • Устройство надежной теплоизоляции и уход за раствором;
  • Электроподогрев залитого в опалубку бетона;
  • Добавка специальных присадок, снижающих температуру замерзания воды и ускоряющих затвердевание.

Таким образом, заливать бетон на улице даже зимой можно без потери показателей прочности, но для этого нужно придерживаться выбранных методик. По стоимости использование тепловых пушек является самым нерентабельным вариантом, наиболее дешевой методикой является добавка присадок. Электроподогрев и устройство качественной теплоизоляции представляют собой промежуточные варианты.

Повышение температуры в процессе замеса

Чтобы залить бетон в минусовую температуру ее компоненты подогревают. Наполнители нагреваются до 55-60⁰С, а воду почти доводят до кипения и подают в раствор при 90⁰С. Цемент перед добавлением разогревается не более, чем до комнатных температур, иначе он теряет свои скрепляющие свойства. Перед укладкой температура раствора не должна быть ниже 35⁰С.

При перемешивании требуется использовать специальную бетономешалку, в которую подается сначала нагретая вода, затем наполнители, и только потом цемент. При заливке такой смеси, тепловой энергии монолита хватает, чтобы набрать критическую прочность, с учетом того, что при гидратации цемента выделяется дополнительное тепло.

Подогрев и утепление раствора

При очень низких температурах нагретая смесь требует дополнительного утепления или подогрева. Экономически более целесообразно утепление, при помощи недорогих теплоизолирующих материалов, не требующих дополнительных источников энергии. На бетонированной поверхности выстилают сено или солому, используют старые тряпки, торф, пленку или специальные теплоизолирующие порывала. Иногда устраиваются так называемые «тепляки» схожие с теплицами.

Утепление бетона

Если бетонировать при температурах ниже -5⁰С, потребуется дополнительный подогрев. Для этого используются различные технологии:

  • Обогрев тепловыми пушками или печами под тепляками. Это довольно затратный метод, требующий постоянного дополнительного увлажнения. Подходит для площадок, к которым не подведено электричество.
  • Применение термоматов, работающих от электричества. Они выкладываются на поверхность залитого бетона и подключаются к источнику тока. Требуют большой объем электроэнергии.Инфракрасные излучатели устанавливаются над залитой поверхностью или вокруг опалубки, интенсивность и направление нагрева регулируется отражателями. Подходит для вертикальных и малодоступных конструкций.
  • Для прогрева бетонированной площади применяют специальные кабеля или электроды, по которым пропускают электрический ток. Методика удобна в применении, но требует больших объемов электроэнергии. Установка системы электродов требует больше затрат, поскольку при высыхании сопротивление раствора, который сам является проводником, возрастает.

Введение добавок

Улучшение характеристик раствора специальными присадками, это самый удобный и экономный метод заливки раствора зимой. Применяя его совместно с обогревом, можно ускорить выполнение работ и повысить качество бетона. Различают два основных типа присадок для заливки бетона зимой:

  1. Составы, уменьшающие температуру замерзания воды. Раствор застывает довольно долго, но вода не кристаллизуется, поэтому качество бетона не страдает. Для ускорения реакции требуют теплоизоляции. В этом качестве используют соли кальция или натрия и поташ, которые препятствуют кристаллизации воды при температурах ниже нуля.
  2. Добавки, увеличивающие скорость затвердевания раствора. Сокращают время, необходимо для набирания бетоном критичной прочности, поэтому вода в прогретой смеси не успевает кристаллизоваться. Применяется нитрит-нитрат кальция, тот же поташ, соли кальция в смеси с мочевиной.

Количество присадок зависит от температурного диапазона, в котором будет производиться заливка бетонной конструкции. От -5 до -10⁰С добавляют до 5-8% от массы цемента. Со снижением температуры до -15⁰С концентрацию увеличивают до 10% по массе от добавленного цемента, а до -25⁰С нужно добавлять не менее 15% добавок.

Общие рекомендации при заливке

Чтобы достигнуть максимальной прочности, нужно знать, при какой температуре заливать бетон, и оптимальные методики обеспечения его твердения. Кроме того, требуется правильная подготовка опалубки. Перед тем, как залить раствор, необходимо тщательно очистить ее от наледи. Грунт и арматуру нужно прогреть, для чего применяются жаровни, тепловые пушки, инфракрасные излучатели и другие устройства. Именно поэтому делать плитные фундаменты в низком температурном диапазоне не рекомендуется, поскольку сложно полностью обогреть все элементы на большой площади.

Работа с ленточным фундаментом в такую погоду вполне возможна. Для этого нужно прогревать траншею постепенно, заливая в нее бетон. После заливки обязательный этап – качественная термоизоляция. Процесс продолжается до тех пор, пока периметр не замкнется. С применением добавок в бетонный раствор и качественной изоляцией ленточный фундамент можно заливать при температуре до -15⁰С.

При работе по укладке бетона, независимо от типа конструкции, нужна непрерывность выполнения работ до полной заливки монолита. Для успешного выполнения работ необходимо рассчитать обеспечить поставку нужного количества раствора и оптимальное число работников.

Внимание! Заливка частями может привести к неравномерности свойств конструкции и снижению ее качества.

Перед тем, как заливать раствор в опалубку, необходимо убедиться, что его температура оптимальна – в районе 38⁰С. Если температура превысит 40 градусов, то скорость затвердевания все равно снизится за счет снижения качества цемента. В результате, для того, чтобы набралась критическая прочность, потребуется слишком много времени, за это время жидкость в растворе рискует замерзнуть, и бетон потеряет свои свойства.

Отвечая на вопрос, возможна ли заливка бетона зимой, можно утверждать – однозначно возможна. При правильном технологическом подходе эти работы можно проводить при самых низких температурах. Укладка без дополнительного прогрева может производиться при небольших морозах, для этого потребуется хорошая термоизоляция и предварительный нагрев бетонного раствора.

При низких температурах требуется дополнительный прогрев массы бетона. Он осуществляется различными методами, выбирать которые нужно непосредственно на строительной площадке. Затраты на обогрев и теплоизоляцию окупаются, поскольку некондиционный бетон снизит качество всей конструкции.

betonpro100.ru

ЭЛЕКТРОПРОГРЕВ БЕТОНА

ТЕХНОЛОГИЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИИ

Электропрогрев бетона может осуществляться про­пусканием тока непосредственно через свежеуложенный бетон (электродный способ) либо применением электрических обогре­вательных приборов.

Более эффективным является электродный способ электро­прогрева бетона, который основан на включении бетона в элек­трическую цепь в качестве полупроводника (сопротивления). Прохождение тока сопровождается выделением тепла непосред­ственно в теле бетона.

Электродный способ. Количество тепла, выделяю­щееся в бетоне при прохождении тока за 1 Ч, определяется формулой

Ф = 0,864/2/? Ккал/ч. (Вт),

Где / —сила тока, А

1?—омическое сопротивление бетона, Ом.

Включение бетона в цепь переменного тока осуществляется посредством электродов из арматурной и сортовой стали, закла­дываемых внутрь прогреваемого бетона или располагаемых на его поверхности. Постоянный ток, вызывающий электролиз во­ды, непригоден для электропрогрева бетона. Электропрогрев бетона следует применять для железобетонных конструкций, имеющих модуль поверхности в пределах М„ = 5-ь20[5].

Основным проводником тока в бетоне является вода с раст­воренными в ней минеральными веществами.

Электрическое сопротивление прогреваемого элемента зави­сит от удельного омического сопротивления бетона, геометриче­ской формы и размеров элементов, типа и расположения элек­тродов и количества арматуры в элементах.

В процессе прогрева бетона по мере его твердения электри­ческое сопротивление бетона возрастает и соответственно умень­шается сила тока. При увеличении сопротивления в два раза сила тока уменьшается также в два раза, в то же время ко­личество выделенного тепла уменьшится в четыре раза, так как оно зависит от квадрата силы тока. Соответствен­но понизится и температура прогреваемого бетона, что нежелательно.

Поддерживание температуры на заданном уровне достигает­ся путем повышения подводимого к изделию напряжения, регу­лирование которого производится трансформаторами в преде­лах 50—100 В. В отдельных случаях электропрогрев возможен и при повышенных напряжениях (120—220 В). В начале прогре­ва для медленного повышения температуры напряжение должно быть невысоким, затем, по мере прогрева и увеличения сопро­тивления бетона, его повышают.

При электропрогреве возможно неравномерное распределе­ние температуры и испарение влаги, причиной которого являет­ся разность парциальных давлений паров в бетоне и окружаю­щей его среде. Интенсивность испарения влаги зависит от тем­пературы и длительности прогрева, расположения электродов и утепления бетона.

Для получения одинаковой температуры во всех точках из­делия тепловыделение должно быть равномерным, т. е. плот­ность тока должна быть одинаковой, что обеспечивается выбо­ром оптимальной схемой размещения электродов и величины подводимого напряжения.

При электропрогреве применяются электроды: наружные, прикрепляемые к внутренним поверхностям форм (пластинча­тые, полосовые), и внутренние, размещаемые в толще бетона (стержневые, струнные).

Пластинчатые и полосовые электроды изготов­ляются из стали толщиной 1,5—2 Мм. Их укрепляют через 10— 20 См на внутренней стороне вертикальных поверхностей формы, концы отгибают и выводят наружу для присоединения к ним электропроводов. Элементы формы, снабженные пластинчатыми и полосовыми электродами при электропрогреве с односторон­ним или периферийным расположением полос изготовляются из токонепроводящих материалов (дерева, пластмассы). Для про­грева настилов и плит толщиной до 15 Мм применяют односто­роннее расположение полосовых электродов, подключенных к разным фазам электросети.

Стержневые электроды являются наиболее универсаль­ными, их можно применять для изделий различной формы неза­висимо от вида армирования и расположения закладных эле­ментов: фундаментных башмаков, колонн, балок, плит толщиной более 15 См и др. Применение стержневых электродов приводит к дополнительному расходу металла; так как они устанавлива­ются внутри изделия и остаются в нем после прогрева, требуют­ся дополнительные затраты труда на их установку и срезку. Стержневые электроды представляют собой короткие прутки из обрезков арматурной стали диаметром 6—10 Мм, устанавливае­мые перпендикулярно продольной оси изделия. Концы электро­дов выступают на 10—15 Мм из бетона, к ним и присоединяются провода.

Струнные электроды изготовляются из круглой стали диаметром 6—10 Мм или из 3—4-миллиметровой проволоки в 2—3 нитки, что увеличивает поверхность металла. Струны уста­навливают по длине прогреваемого изделия, концы их выводят наружу для подключения к сети и крепят к изоляторам (бетон­ным или деревянным брускам), обеспечивающим необходимое положение струн.

Установка стержневых и струнных электродов требует осо­бого внимания. Нельзя допускать их соприкасания с арматурой, так как возможно короткое замыкание (при подключении раз­ных фаз) или местный перегрев бетона (при подключении одной фазы). При прогреве стержневыми и струнными электродами можно применять формы из любых материалов — металличе­ские, железобетонные, деревянные и др.

Слой бетона между электродами и арматурой должен быть не менее 5—10 См в зависимости от принятого напряжения тока. При невозможности выдержать этот разрыв необходимо бли­жайшие к арматуре участки электродов обертывать толем или заключать в резиновые трубки.

Режим электропрогрева бетона следует назначать с учетом степени массивности изделия, вида и активности це­мента, необходимой прочности бетона и возможности обеспече­ния ее за время остывания прогретого изделия. Процесс про­грева бетона характеризуется скоростью подъема температу­ры, температурой и продолжительностью изотермического про­грева.

Режим электропрогрева, учитывающий нарастание прочно­сти бетона за время остывания, является более экономичным, но требует увеличения продолжительности тепловой обработки, а следовательно, приводит к увеличению парка форм и разме­ров производственных площадей. Для сокращения продолжи­тельности электропрогрева следует стремиться к более высоким скоростям подъема температуры бетона, применяя автоматиче­ское регулирование температуры во избежание перегрева бе­тона.

Предельная скорость подъема температуры зависит от моду­ля поверхности изделий, степени их армирования и типа приме­няемых электродов (табл. 9).

Таблица 9

Скорость подъема температуры при электропрогреве

Характеристика изделия

Тип электродов

Скорость

Подъема

Температу­

Ры,

Град/ч

Изделия сложной конфигурации (ребристые плиты, лестничные мар­

Полосовые и стержневые электроды

5—10

Ши, сантехнические блоки, колонны

И балки)

Армированные блоки прямоуголь­ного сечения, блоки фундаментов, ко­лонны и балки прямоугольного сече­ния

Пластинчатые и полосо­вые электроды, плоские группы стержневых элект­родов

15

Неармированньге блоки прямо­

Пластинчатые борта-элек­

Угольного сечения

Троды или перегородки-элек­троды в кассетных формах

30

Повышение температуры изотермического прогрева позволя­ет значительно сократить продолжительность тепловой обработ­ки и расход электроэнергии, однако, в зависимости от модуля по­верхности изделий и вида цемента нормами установлены пре­дельно допустимые температуры изотермического прогрева (табл. 10).

Продолжительность изотермического прогрева для получе­ния заданной прочности бетона определяется расчетом, исходя из принятых величин скорости разогрева и температуры изотер­мического прогрева [13].

Температуры изотермического прогрева бетона

Температура (град) При модуле поверхности изделия

Вид цемента

До 10

10-15

15—20

Шлакопортландцемент Марки 300— 500 ..

80

65

50

Пуццолановый портландцемент марки 300—400 ........................................................

80

60

45

Портландцемент марки 300—400 .

70

50

40

То же, 500—600....................................

60

40

35

Устанавливается средняя температура бетона за период ра­зогрева

Л.___________ и 1 б

£ср. разогр. — ^ *

Где / и и — температура изотермического прогрева и темпера­тура бетона перед прогревом, Град.

Продолжительность подъема температуры

Т= -±-^~ , Г

Где Г — скорость подъема температуры, Град/ч.

Рис. 63. Интенсивность нарастания проч­ности бетона на портландцементе при электропрогреве.

подпись: 
рис. 63. интенсивность нарастания прочности бетона на портландцементе при электропрогреве.
По графику соответственно примененному цементу опреде­ляют нарастание прочности бетона за время разогрева при уста­новленных значени­ях и Т (рис. 63).

Остальную часть прочности до задан­ной величины бетон приобретает в пери­од изотермического прогрева, длитель­ность которого оп­ределяется по кри­вой нарастания прочности, соответ­ствующей принятой температуре изотер­мического прогрева.

Полученная расче­том продолжитель­ность изотермичес­кого прогрева обеспечивает заданную прочность бетона без уче­та его дополнительного твердения в период остывания.

Продолжительность изотермического прогрева обычно при­нимают ДЛЯ получения бетоном 50% ОТ 1^28, при этом средняя продолжительность прогрева бетона на портландцементе колеб­лется от 8 до 12 ч.

Остывание бетона после прогрева должно протекать со сни­жением температуры на 5—10° в час в зависимости от величины модуля поверхности изделия. Остывание наиболее быстро про­текает в первые часы после выключения тока и тем интенсивнее, чем выше температура изотермического прогрева.

ЭЛЕКТРОПРОГРЕВ БЕТОНАЭЛЕКТРОПРОГРЕВ БЕТОНА

Рис. 64. Схема подключения электро­дов для прогрева колонн: А — стержневыми электродами; Б — струнны­ми электродами; 1 — софитные линни; 2 — стержневые электроды; 3 — струйные элек­троды; 4 — металлическая бортовая форма.

подпись: рис. 64. схема подключения электродов для прогрева колонн: а — стержневыми электродами; б — струнными электродами; 1 — софитные линни; 2 — стержневые электроды; 3 — струйные электроды; 4 — металлическая бортовая форма.К специальному оборудованию для электро­прогрева сборных изделий относятся понизительные трансфор­маторы, распредели­тельные шиты и разво­дящие устройства.

Применяются пре­имущественно специ­альные трансформато­ры трехфазного тока (типа ТМ-75/6 мощ­ностью 50 Кет и др.), дающие на низкой сто­роне напряжения 50, 61, 87, 106 В. Каждый трансформатор смон­тирован в блоке с рас­пределительным щи­том, установленным в шкафу из листовой стали. Можно приме­нять также однофаз­ные трансформаторы типа ТБ-20 или сва­рочные типа СТЭ-24, которые при трехфаз­ном токе группируют­ся по 3 и 6 штук. Сва­рочные трансформато­ры не приспособлены к длительной нагрузке, поэтому они пере­греваются, и мощность их можно использовать только на 70— 80% номинальной. От щита трансформатора шинами, кабелями и проводами (в зависимости от мощности трансформатора) на­пряжение подают на промежуточные распределительные щиты, клеммные щитки или группы форм (рис. 64).

Контроль и управление электропрогревом легко могут быть автоматизированы. Помимо сокращения трудовых затрат, при­менение автоматики повышает точность контроля прогрева, со­кращает расход электроэнергии и времени на электропрогрев.

Измерение температуры бетона при электропрогреве произ­водят техническими термометрами или автоматически посред­ством термометров сопротивления и самопишущих приборов.

Определение прочности бетона посредством контрольных ку­бов при электропрогреве неприменимо, так как нельзя обеспе­чить одинаковые режимы твердения образцов и изделий. Поэто­му для определения прочности изделий при электропрогреве следует применять способы, основанные на испытании непосред­ственно бетона изделия, например, физические или ударные.

Наиболее простым и достаточно надежным способом обеспе­чения заданной прочности является контроль соблюдения темпе­ратурного режима прогрева. Такой способ контроля принят на всех заводах и полигонах, на которых применяется электро­прогрев сборных конструкций.

Во избежание больших теплопотерь прогреваемые изделия необходимо утеплять, что обеспечивает более равномерное рас­пределение температуры и повышает качество бетона. Чтобы воспрепятствовать потере влаги, открытая, поверхность изделия защищается водонепроницаемым укрытием, например, полиа­мидной пленкой или листами толя, пергамина и др.

При электропрогреве сборных железобетонных изделий необ­ходимо строгое соблюдение требований техники безопасности в соответствии с «Правилами техники безопасности при эксплуата­ции электротехнических установок промышленных предприя­тий». К производству работ по электропрогреву допускаются ли­ца, прошедшие специальную подготовку.

Прогрев бетона электроприборами. Прогрев бето­на, осуществляемый посредством внешних источников тепла, ко­Торое Передается бетону через промежуточную среду (воздух, термоактивный слой, металлические стенки формы) или непо­средственно (лучеиспусканием), менее эффективен, чем элект­родный прогрев, и применяется значительно реже.

Прогрев бетона электронагревателями получил некоторое применение в производстве железобетонных изделий на полигонах. Электронагреватель отражательного типа пред­ставляет собой параболический деревянный короб, внутри утеп­ленный и обитый жестью. В коробе по всей его длине устанав­ливается одна или несколько нагревательных спиралей. На поверхность изделия устанавливают один или несколько нагре­вателей. Температура бетона регулируется отключением части спиралей или изменением подводимого напряжения.

При изготовлении коллекторных железобетонных колец на полигонах неоднократно применялись круглые электрические нагреватели, устанавливаемые внутрь каждого распалубленного кольца. Такой электронагреватель представляет собой отрезок асбестоцементной трубы, на которую навиваются 3 спирали из нихромовой проволоки диаметром 0,8 Мм. Общая длина спира­лей 15 М, мощность 2,8 Кет. Напряжение подводят от понизи­тельного трансформатора. Сверху изделия закрывают деревян­ными щитами и утепляют.

При прогреве бетона под термоактивным слоем опилок, окружающим стенки формы или покры­вающим поверхность изделия, электроэнергия преобразуется, в тепло, нагревающее бетон. Стенки термоформ выполняются из дерева и делаются двойными с зазором в 100—150 Мм, который засыпается слоем опилок с уплотнением. Для обеспечения необ­ходимой электропроводности опилки увлажняются 3—5%-ным раствором поваренной соли. В слое опилок размещают электро­ды из круглой или полосовой стали. Тепло от термоактивного слоя через внутреннюю стенку формы передается изделию.

При изготовлении изделий на бойках или площадках термо­активный слой располагается сверху. Изделия засыпают слоем опилок толщиной 50—60 Мм, затем укладывают электроды из круглой или полосовой стали, а поверх электродов — второй слой опилок толщиной 100—120 Мм. Расстояния между элект­родами принимают в зависимости от подводимого напряжения. Смежные электроды подключают к разным фазам электросети, температуру в термоактивном слое поддерживают на уровне 80—90°.

Прогрев бетона инфракрасными лучами более эффективен по сравнению с другими способами внешнего обо­грева бетона. Инфракрасные излучения представляют собой электромагнитные колебания с различной длиной волны (от 0,76 до 6 Мк). Они излучаются внешними электронами атомов в ре­зультате вращательных и колебательных движений молекул, вызванных нагреванием источника излучения.

При инфракрасном облучении бетона обеспечивается непо­средственная передача тепловой энергии от источника излучения нагреваемому изделию. Это обусловливает быстрый подъем тем­пературы нагреваемого изделия и малый расход тепла на еди­ницу продукции.

Источниками (генераторами) инфракрасного излучения явля­ются специальные лампы накаливания типа ЗсЗ напряжением 127 и 220 В, мощностью 0,25 и 0,5 Кв, т, а также плоские и круг­лые металлические излучатели с огнеупорным изолирующим по­крытием и нагревающими спиралями из нихромовой проволоки. Светоотдача лампы инфракрасного облучения типа ЗсЗ состав­ляет примерно 7З светоотдачи обычной осветительной лампы, так что 80—90% подводимой электроэнергии преобразуется в энергию излучения. Тепловой поток лампы ЗсЗ неравномерен, интенсивность его изменяется в зависимости от расстояния от лампы до изделия и расстояния от центра лампы по горизон­тали.

В производственных условиях прогрев инфракрасными луча­ми применялся на ряде заводов сборного железобетона. В ре­зультате накопленного опыта определились основные параметры тепловой обработки бетона. После предварительного выдержи­вания в течение 2—3 Ч (для портландцемента) изделия по­даются в камеру для прогрева. Подъем температуры бетона для изделий толщиной до 150 Мм производят за 1—2 Ч, изотермиче­ский прогрев изделий при температуре 70—90° продолжается до 6 Ч. Таким образом, продолжительность тепловой обработки по сравнению с паропрогревом несколько сокращается.

Добавка в бетонную смесь химических ускорителей тверде­ния, как и при других способах тепловой обработки, ускоряет процесс твердения.

Разборные и виброформы для бетонных колец (0.7м, 1м, 1.5м, 2м). Формы для колодезных и бетонных колец. Заказы по тел +38 050 4571330 или эл. почта: [email protected] Цены март 2015г.: Виброформы …

Для учета производственной деятельности пред­приятия и оформления результатов контроля необходимо веде­ние технических записей, журналов испытаний, лабораторных анализов и пр. Основные виды технической документации на заводах сборного железобетона следующие[14]: А) журнал …

Контроль качества готовой продукции осуществля­ется в соответствии с требованиями ГОСТов и технических ус­ловий. Разрешается не производить испытание готовых изделий до разрушения за счет увеличения, объема пооперационного кон­троля, а также применения …

msd.com.ua


Смотрите также