Добавки для повышения морозостойкости бетона. Повышение морозостойкости бетона


Добавки в бетон для морозостойкости, их виды и где они применяются

 

Бетон с момента своего открытия стал одним из наиболее важных строительных материалов. Это связано, прежде всего, с его высокими эксплуатационными свойствами. Но при этом он имеет также несколько недостатков. Наиболее существенным из них является низкая устойчивость к воздействию минусовых температур. В настоящее время подобной проблемы уже не существует. Разнообразные добавки в бетон для повышения морозостойкости помогают улучшить сопротивляемость данного материала неблагоприятным зимним условиям.

Добавки в бетон

Где применяется морозостойкий бетон

Далеко не при каждом типе строительства нужны морозостойкие добавки. Их преимущественно используются тогда, когда процесс возведения зданий осуществляется в зимний период времени. При этом показатели температуры не должны опускаться очень низко. Когда столбик термометра опускается ниже -25 градусов, нужно прекратить процесс работы, так как приготовить качественный бетон попросту не получится.

Присадки для создания морозоустойчивого бетона позволяют работать со стройматериалом даже тогда, когда температура ниже -15 градусов по Цельсию. Если показатели всего -5-7 градусов, можно обойтись лишь использованием теплой воды. Характеристики раствора в таком случае не ухудшатся.

Применение морозостойкого бетона

Виды добавок для повышения морозостойкости

Вещество, которое повышает морозостойкость, может существенно изменить эксплуатационные и качественные характеристики раствора. Цель каждой присадки в бетон – подготовить конкретный компонентный состав к тем или иным климатическим условиям.

Существуют следующие популярными добавки, влияющие на степень морозостойкости и некоторые другие показатели данного материала:

  1. Суперпластификаторы. Они представляют собой химические вещества, что влияют на подвижность бетонной смеси. Это отражается и на других свойствах раствора. Среди них специалисты выделяют твердость, прочность, а также водонепроницаемость. К тому же любой пластификатор в итоге влияет на расход бетона, уменьшая его количество. Одним из наиболее популярных видов является продукт российской компании «Полипласт», под названием «С-3».
  2. Ускорители отвердения. Данные искусственные вещества так или иначе влияют на схватывание и затвердевание. Эти процессы происходят достаточно быстро. Стоит понимать, что почти все ускорители отвердения снижают уровень пластичности материала, но при этом возрастают прочностные показатели бетона (в значительной степени увеличиваются по мере его застывания). Так как время схватывания не очень большое, процесс возведения сооружений происходит максимально быстро.
  3. Регуляторы пластичности. Их цель – это продление периода использования готовой смеси. Это важно в тех случаях, когда предварительно подготавливается большое количество материала, которому нужно сохранять свои свойства до того, как начнется процесс его использования на объекте. Среди регуляторов пластичности популярностью пользуется хлорид кальция, нитрат кальция, нитрит-нитрат кальция, нитрит-нитрат-хлорид кальция, сульфат натрия, нитрат натрия, тринатрийфосфат и хлорид натрия (соль). Подобные добавки нередко востребованы, когда существует необходимость осуществления заливки бетона в нестандартные формы. Материал в подобных случаях лучше заполняет все неровности.
  4. Морозостойкие добавки для создания бетона. Их также добавляют в состав бетонной смеси, если температура окружающей среды опускается ниже -7 градусов по Цельсию. Это позволяет в подобных погодных условиях сохранять свойства материала длительное время. Пользующиеся спросом марки добавок следующие: МБ 10-01, МБ 10-30С, МБ 10-50С и МБ 10-100С. Они отличаются соотношением своих основных компонентов: микрокремнезема и золы.
  5. Модификаторы. Они позволяют существенно повысить показатель прочности. На фоне их использования улучшается сопротивляемость коррозии и низким температурным условиям.
  6. Комплексные присадки. Такие добавки считаются наиболее популярными, так как они воздействуют на несколько эксплуатационных качеств бетона одновременно. Данная группа присадок может уменьшать расход воды, повышать устойчивость к морозу и коррозии, продлевать срок затвердения и т.д.

Количество имеющихся добавок весьма значительное. В строительстве используются как различные искусственные вещества, так и природные элементы. Даже соль в бетон в некоторых случаях добавляют, чтобы полученная морозостойкая смесь могла выполнять свои функции в суровых погодных условиях.

Важно понимать, что присадки, в которых присутствует хлорид, могут понижать коррозийную устойчивость арматурных элементов в бетоне. Однако добавки, в основе которых лежит нитрит натрия, наоборот являются замедлителями данного процесса.

Как применять

Морозостойкая добавка в бетон может как улучшать качество материала, так и понижать его. Это напрямую зависит от того, в каких конкретно условиях он используется и с чем контактирует. Поэтому важно рассмотреть несколько популярных вариантов применения материала:

  1. Если в бетонных конструкциях применяется ненапрягаемая арматура, диаметр которой превышает 5 миллиметров, никаких ограничений в применении присадок нет. Процесс твердения и устойчивости материала можно в подобной ситуации изменять в произвольном порядке.
  2. В случае, когда диаметр ненапрягаемой арматуры до 5 миллиметров, не рекомендуется использование добавок, в которых присутствует продукт воздействия соляной кислоты на кальций. В данной ситуации также будет неблагоприятным сочетание последней присадки с нитритом натрия.
  3. Когда в конструкции присутствуют закладные и выпускные элементы, не имеющие защиты, нужно использовать следующие вещества: поташ (карбонат калия), смесь мочевины и нитрата калия, нитрат натрия, а также нитрат кальция. Их можно добавлять в бетон своими руками в процессе его замешивания.
  4. Если бетонная конструкция в будущем будет эксплуатироваться в условиях, где присутствует агрессивная газовая среда, не стоит использовать присадку, которая является продуктом воздействия соляной кислоты на кальций. В подобных ситуациях возможно ускорение процесса появления коррозии.

Приготовить пластификатор для бетона своими руками можно в домашних условиях. Но при этом более качественной будет добавка, приобретенная в строительном магазине. Это обусловлено тем, что она прошла соответствующую проверку, определяющую точное количество присутствующих в ней веществ. Самостоятельное приготовление присадок иногда вызывает негативные последствия.

 

betonpro100.ru

Способы повышения морозостойкости бетона | НерудБизнесТорг

Одним из важнейших показателей качества бетонных строительных сооружений является их морозостойкость. Так принято называть способность бетонной смеси и отвердевшего бетона выдерживать многократно повторяющиеся циклы замораживания/оттаивания бетона и агрессию резких температурных перепадов в окружающей среде без разрушений, необратимых деформаций, с сохранением периода эксплуатационного ресурса. Низкая морозостойкость одинаково негативно сказывается на состоянии несущей способности залитого фундамента возведенного жилого строения и огромного гидротехнического комплекса.

Воздействие циклических температурных перепадов на бетон

Несмотря на свою камнеподобную структуру, бетон не способен активно противостоять многократным циклическим воздействиям температурных перепадов, переходящих от плюсовых температур окружающей среды через точку замерзания воды (ноль градусов по Ц) к глубоким минусовым значениям (до минус 50-60 градусов Ц для районов с холодной зимой). Со временем в бетонных конструкциях проявляются локальные выкрашивания, шелушения, сколы, развивающиеся в глубокие трещины. Если заказать бетон с доставкой, например, бетон М100 (цена с доставкой согласно каталогов поставщиков), имеющий низкую марку по морозостойкости, то уже через несколько сезонов зима/лето в условиях резко континентального климата можно заметить проявления начинающихся разрушений в поверхностной части.

На рис. ниже показана динамика развития трещины в теле бетонного изделия при многократных замораживаниях/оттаиваниях.

Способы повышения морозостойкости бетона

Механизм морозного разрушения бетона

Основной причиной морозных разрушений бетона является свойство воды увеличиваться в объеме при фазовом переходе из жидкого состояния в твердое. Объем образующегося льда более чем на 9-12 процентов превышает объем воды до ее замерзания. При затворении цемента водой часть жидкости не вступает в реакцию гидратации, а остается в капиллярах и порах структуры бетонной смеси. Бетон сам по себе является пористым материалом, пористость которого зависит от соотношения содержания цемента с химически связанной водой. При замерзании образовавшиеся в капиллярах и порах ледяные кристаллы создают высокое внутреннее давление на стенки капилляров, которого вполне достаточно для разрушения увлажненного материала.

На рис. ниже приведено фото увеличенных пор, подвергающихся циклическим замерзаниям/оттаиваниям.

Способы повышения морозостойкости бетонаВ соответствии с физической картиной процесса разрушения бетона можно сделать вывод, что морозостойкость бетона зависит от следующих факторов:

  • количества пор в структуре бетонного монолита;
  • характера пористости структуры;
  • минерального и химического состава цементного вяжущего;
  • степени прочности бетона на растяжение.

Методы повышения морозостойкости бетона

Воздействуя различными способами на вышеуказанные факторы, на практике добиваются повышения морозостойкости бетонной смеси. Наиболее эффективными являются методики, направленные на устранение внутренней пористости структуры, чтобы минимизировать влияние ледяных кристаллов на прочность бетона.

    1. Снижение макропористости бетона

Уменьшение количества пор больших размеров способствует тому, что свободная от гидратации вода не сможет найти дополнительные полости в структуре бетона.

К снижению макропористости приводят следующие мероприятия:

  • снижение водоцементного отношения;
  • уменьшение водопотребности бетонной смеси для снижения расхода воды;
  • применение незагрязненных инертных заполнителей оптимальных зерновых составов с минимальной водопотребностью;
  • качественное уплотнение бетонной смеси;
  • создание благоприятных температурных и влажностных условий твердения.
    1. Изменение характера пористости

При введении в бетон воздухововлекающих добавок создается от 4 до 6 процентов мелких пор резервного характера, которые вода при обычном затворении не заполняет, но при замерзании, в соответствии с законом увеличения объема при фазовом переходе, она в них перетекает. Наиболее эффективными считаются добавки ГКН-10 и ГКН-11, снижающие показатель водопоглощения бетонной смеси.

    1. Минеральный и химический состав цемента

Наибольшая морозостойкость у бетонов, замешанных на портландцементе. Более высокую степень морозостойкости имеют бетоны с глиноземистым цементом. Пониженная морозостойкость у бетонов на пуццолановом портландцементе с активными добавками осадочного происхождения.

4.Напряжения, возникающие при давлении ледяных кристаллов на стенки пор и капилляров при замораживании, являются растягивающими. Поэтому нередко используются различные мероприятия, способные увеличить предельное растягивающее напряжение бетона.

Возможность увеличивать морозостойкость бетона благоприятно способствует повышению срока безаварийной эксплуатации строительного бетонного сооружения в условиях резких температурных перепадов.

nbt.su

Морозостойкость бетона - определение морозостойкости бетона

Морозостойкость бетона, является важной технической характеристикой, регламентированной требованиями нормативного документа ГОСТ 26633-2012. Технический смысл морозостойкости тяжелого бетона заключается в способности бетонной конструкции выдержать определенное количество циклов «замерзания-оттаивания» без потери прочности и целостности.

СодержаниеСвернуть

Морозостойкость бетона определение

В общем случае числовое значение данной величины определяет марка бетона и добавки в бетон для морозостойкости значительно повышающие количество циклов «замерзания-оттаивания» того или иного сооружения.

Марки бетона по морозостойкости

Действующий нормативный документ – ГОСТ 26633-2012 «Бетоны тяжелые и мелкозернистые», определяет строительные материалы на следующие марки по морозостойкости: F50, F75, и далее до F1000. В обычном жилом и коммерческом строительстве оперируют показателями морозостойкости от F50 до F300 в зависимости от марки и класса применяемого материала. Для наглядности приводим следующую таблицу морозостойкость бетона:

Марка бетона по ГОСТ 26633-2012 г, «М»Класс бетона по ГОСТ 26633-2012 г.Морозостойкость бетона по ГОСТ 26633-2012 г.
100В7,5F50
150В10-В12,5F50
200В15F100
250В20F100
300В22,5F200
350В25F200
400В30F300

Примечание. Здесь и далее по тексту будет идти речь о тяжелых бетонах, как о самых распространенных материалах в малоэтажном, многоэтажном и коммерческом строительстве зданий и сооружений.

Как следует из таблицы морозостойкости бетона, чем прочнее материала, тем выше показатели морозостойкости бетона. Соответственно, если перед застройщиком стоит задача возвести максимально долговечное здание или сооружение, следует использовать бетонный материал высших марок.

Как повысить морозостойкость бетона

Вопрос увеличения стойкости материала к воздействию низкой температуры очень актуален для сурового климата большинства территории Российской Федерации. На данный момент времени существует два основных способа увеличения класса бетона по морозостойкости:

  • Увеличение плотности бетона методом уменьшения объема количества макропор и их проницаемости для влаги атмосферных факторов. К примеру, с помощью оптимального соотношения «Вода-Цемент» (примерно 0,5), тщательного уплотнения бетона различными способами, применения присадок, с помощью или кольматации воздушных образований пропиткой специальными составами, также с помощью создания наиболее благоприятных условий схватывания и твердения бетона (укрыв полиэтиленовой пленкой, регулярное увлажнение водой сбрызгиванием и другие мероприятия).
  • Увеличение в теле конструкции резервного объема воздушных пор (около 20% от объема замерзающей воды), которые не заполняются при стандартном водонасыщении с помощью специальных добавок.

Популярные присадки общего применения, для увеличения морозостойкости бетона: Смола СНВ воздухововлекающая добавка, Гидрофобизатор для бетона ГКЖ 136-41 (ГКЖ-94), Жидкость 136-157М, Oil MH 15, TSF 484, SILRES BS и другие.

Испытание бетона на морозостойкость

Любой застройщик частного дома и сооружения может проверить стойкость своего бетонного сооружения на морозостойкость в соответствии с требованиями ГОСТа “Морозостойкость бетона 10060-2012”. Для этого следует обратиться в одну из специализированных компаний. Определение морозостойкости в домашних условиях практически невозможно.

Для создания температурных условий требуется специальная морозильная камера и другое специальное оборудование. Поэтому, методы определения морозостойкости бетона – это специальные методы возможные к реализации в условиях специализированных компаний, обдающих специальным оборудованием и штатом опытного персонала.

При обращении в специализированную компанию, по результатам испытаний на морозостойкость оформляется официальный документ – Протокол морозостойкости бетона, который предоставляется заказчику.

При этом если застройщик при приготовлении бетона соблюдает рекомендованные пропорции компонентов бетона той или иной марки, он может ориентироваться на данные морозостойкости, приведенные в таблице данной и не загружать себя дорогостоящими проверками образцов на морозостойкость.

 

cementim.ru

Морозостойкость бетона, способы ее повышения

Страница 4 из 4

 

Морозостойкие бетоны на легких заполнителях, в особенности с использованием мелкого и крупного пористых заполнителей, имеют значительный недостаток - происходит значительная потеря статической прочности по сравнению с бетонами на плотных заполнителями.

В опытах таких ученых, как Г. А. Франк и В. Ф. Знакомский замена плотных заполнителей на керамзит и керамзитовый песок обеспечила значительное повышение как морозостойкости, так и солестойкости бетона, но привела к 2,5-5-кратному снижению исходной прочности бетона на сжатие и 20-40 %-ой потере прочности на растяжение при изгибе. Чтобы избежать снижения прочности бетона, был разработан более оптимальный состав бетонов с заменой части плотных заполнителей на пористые, когда потери статической прочности оказываются относительно умеренными. Это благоприятно не только для прочности, но и оптимизирует бетоны по морозостойкости. Технология изготовления таких бетонов сводится к замене части плотных заполнителей демпфирующими компонентами.

Демпфирующим компонентам присущи жесткостные характеристики, зависящие от пористости бетона. Введение в бетон таких добавок, снижающих концентрацию напряжений на границе раздела фаз с различными упругими характеристиками, значительно уменьшает размах колебаний и пределы изменений максимальной и минимальной деформации и напряжений в процессе разрушения бетона. Механизм торможения процессов разрушения бетона определяется присутствием в нем «слабых» упруго-вязких и слоистых включений, снижающих локальные напряжения и гасящих энергию роста трещин.

Применительно к морозостойкости, эффективными демпфирующими компонентами являются мелкоразмерные гранулы пенополистирола, которые при умеренной объемной концентрации сохраняют статическую прочность бетона на приемлемом конструкционном уровне. Гранулы пенополистирола способны на длительное время сохранять функцию резервных пор, а также обеспечивать функцию демпфирующих включений, в значительной степени разгружающих структурную ячейку на уровне мелкого заполнителя от внутриструктурных напряжений.               Циклическое замораживание и оттаивание бетона с демпфирующими добавками протекает без проявления внутриструктурных повреждений с упрочнением и свидетельствует в целом о высокой стойкости структуры к многократно повторным воздействиям минусовых температур.

Оптимальная концентрация демпфера для керамзитового песка повышенной прочности сочетается со сравнительно небольшими потерями по статической прочности, т. е в этом случае обеспечивается получение полноценных конструкционных бетонов повышенной морозостойкости.

В качестве демпфирующих компонентов для повышения морозостойкости эффективны и другие поризованные минеральные компоненты в дисперсном виде, например, горелопородные пески силикатно-алюминатной минералогии, доменные гранулированные шлаки повышенной пористости.

Однако у данного метода есть недостаток. В последние годы при возведении ограждающих конструкций массовое применение получает полистиролбетон низких марок средней плотности (D150-D250), ввиду незначительной массы крупноразмерных блоков и относительно невысокой трудоемкости их монтажа. Но применение полистиролбетона в жилищном строительстве в научном аспекте обосновано недостаточно. В частности, при использовании незначительной толщины штукатурного слоя для отделки наружной поверхности конструкции из полистиролбетона в жаркий период могут ускориться процессы старения гранул полистирола с их частичной сублимацией, что приводит к снижению его прочности и морозостойкости. В весенне-осенний период знакопеременные переходы температуры через нулевой уровень приведут к дополнительному снижению прочности полистиролбетона. Циклические воздействия высоких и знакопеременных температур могут значительно снизить эксплуатационную надежность и даже привести к разрушению наружной поверхности и соответственно контактной зоны полистиролбетона с отделочным слоем. Поэтому при высокой этажности и значительных ветровых нагрузках сохранность целостности зданий с использованием ограждающих конструкций из полистиролбетона требует уточненного расчетно-экспериментального обоснования.

Негативным аспектом применения полистиролбетона в жилищном строительстве является и его потенциальная экологическая опасность, в том числе при пожаре. При использовании штукатурного слоя по металлической сетке для отделки поверхности стены внутри помещения (наиболее распространенный вариант) в зимнее время при высокой температуре отопительных элементов может произойти деструкция поверхностного слоя гранул полистирола и диффузия стирола в жилые помещения, что при недостаточной вентиляции будет негативно влиять на здоровье проживающих в них людей. Поэтому массовое применение полистиролбетона в строительстве для устройства наружных стен в жилых зданиях является научно необоснованным и преждевременным [4], [7].

Распространенным материалом, также способным повысить (или восстановить морозостойкость), является добавка «Кальматрон-Д». При применении данного состава марка по морозостойкости повышается на F100 (циклов), температура эксплуатации от - 60 до + 130 С0. Материал основан на взаимодействии в присутствии воды комплекса химически активных минеральных добавок с цементом, содержащимся как в самом «Кальматроне», так и в защищаемой бетонной конструкции. При этом образуется насыщенный электролитический раствор, который, благодаря осмотическим процессам, проникает вглубь структуры бетона по имеющимся в нем капиллярам, порам и трещинам даже навстречу давлению воды. И уже внутри бетона из этого раствора вырастают кристаллические новообразования игольчатой и пластинчатой формы, которые, разделяя имеющиеся пустоты и поры на многократно более мелкие, уплотняют структуру бетона. При этом бетонная конструкция остается паропроницаемой.

«Кальматрон» применяется при строительстве резервуаров, фундаментов, плотин, шахт, подвальных помещений, хранилищ нефтепродуктов, метрополитенов, тоннелей, причалов, мостовых сооружений, бетонных дамб [6], [8].

Итак, создание морозостойкого бетона и увеличение морозостойкости бетона в процессе эксплуатации является важной проблемой в строительстве ввиду широкого применения бетона в строительных конструкциях и при строительстве дорог.

Наиболее успешным способом увеличения морозостойкости является введение в бетонную смесь природных цеолитсодержащих пород. Кроме выгоды с экономической точки зрения, в данном случае увеличивается морозостойкость, долговечность и прочность бетона. Важным аспектом является и отсутствие экологической опасности при недостаточной вентиляции, в отличие от метода с применением полистиролбетона.

Литература

  1.      Использование природных цеолитсодержащих пород для повышения морозостойкости бетонов транспортных сооружений. / К. В. Оськин. // Транспортное строительство. - 2008. - № 7. - С. 16-18.
  2.      Определение конкретных значений морозостойкости бетона при испытаниях базовыми методами ГОСТ 10060.0 - 10060.2-95. / В. Г. Бойко. // Бетон и железобетон. - 2010. - N 6. - С. 19-22.
  3.      Особенности морозно-солевого воздействия на свойства аэродромного бетона. / С. Н. Толмачев, И. Г. Кондратьева. // Строительные материалы. - 2011. - N 3. - С. 107-110.
  4.      Структурные зависимости морозостойкости ячеистого бетона. / Е. Г. Величко. // Строительные материалы. - 2012. - N 4. - С. 73-75.
  5.      Определение морозостойкости крупного заполнителя для тяжелых бетонов. / Л. М. Добшиц. // Бетон и железобетон. - 2012. - N 4. - С. 16-20.
  6.      Эксплуатационные характеристики бетона строительных конструкций с применением системы «Кальматрон». / С. Н. Леонович, Н. Л. Полейко, С. В. Журавский, Ю. Н. Темников. // Строительные материалы. - 2012. - N 11. - С. 64-67.
  7.      Структурообразование и разрушение цементных бетонов. Бабков В. В.; Мохов, В. Н.; Капитонов С. М.; Комохов П. Г.
  8.      Официальный сайт группы компаний «Кальматрон», добавки в бетон. [Электронный ресурс]: http://kalmatron.ru/products/kompleksnaya_dobavka_v_beton/kalmatrond/ (дата обращения: 13.08.2015).

 

scienceproblems.ru

определение, как повысить с помощью добавок

Все материалы, используемые при строительстве и капитальном ремонте, должны соответствовать климатическим условиям эксплуатации. Не в последнюю очередь это касается бетона, так как от его морозостойкости и способности переносить сильные температурные перепады зависит устойчивость всей конструкции.

Морозостойкость бетона разных марок: определение, как повысить с помощью добавок

Оглавление:

  1. Описание смесей разных марок
  2. Способы повышения морозостойкости
  3. Применение в частном строительстве

Бетон — пористый материал, когда в него попадает влага из почвы или воздуха, при отрицательной температуре она замерзает и сильно расширяется, что приводит к появлению трещин. Процесс может повторяться многократно, и при каждом последующем цикле разрушения будут все значительнее. Морозостойкость бетона — это его способность неоднократно переносить заморозки и оттаивания, и при этом сохранять свои первоначальные физико-механические свойства. Предельно допустимая потеря прочности — не более 5%.

Марки бетона

Марка и класс включают в себя такие нормативы как качество, прочность, водопроницаемость и морозостойкость. Последний показатель напрямую зависит от структуры материала — чем больше его пористость, тем ниже этот параметр.

По действующим в РФ стандартам ГОСТ 10060.0-95 морозостойкость бетона обозначается буквой F и цифрами, указывающими на допустимое число циклов заморозки и оттаивания раствора в процессе эксплуатации. Российские стандарты ГОСТ полностью совместимы с международными стандартами.

Морозостойкость

Марка Характеристики
Низкая F50 и менее Практически нигде не применяется, так как на открытом воздухе все конструкции с высокой водопроницаемостью очень быстро разрушаются.
Умеренная F50-F200 Имеет оптимальные показатели и является самым распространенным и широко применяемым. Именно такая марка бетона используется для частного строительства в средней полосе России.
Повышенная F200-F350 Данная марка предназначена для эксплуатации зданий в суровых климатических условиях. Материал с легкостью выдерживает значительные температурные перепады и на протяжении десятилетий сохраняет свои первоначальные качества.
Высокая F350-F500 Требуется в исключительных случаях, например, в условиях переменной влаги.
Особо высокая F500 и более Используется, когда эксплуатационный период исчисляется в буквальном смысле слова веками. Как правило, столь высокий параметр достигается путем ввода различных добавок и присадок.

Марка и класс бетона по морозостойкости имеют прямую зависимость — чем больше прочность, тем выше его цена и ниже водопроницаемость. Соотношения приведены в таблице ниже:

F Марка Класс
50 В7,5-В12,5 М100-М150
100 В15-В22,5 М200-М250
200 В25 М300-М350
300 В30 М400
Более 300 В35-В45 М450-М600

Как повысить морозостойкость?

Она напрямую зависит от числа образующихся макропор в структуре. С уменьшением пористости стойкость к многочисленным циклам заморозки-оттаивания увеличивается. Существует несколько способов повысить морозостойкость и снизить водопроницаемость цементного раствора при частном строительстве:

1. Первый и самый примитивный метод заключается в качественном уплотнении цементной смеси при заливке. При сильном утрамбовывании в разы уменьшается пористость материала и снижается объем влаги, попадающей в бетон при его насыщении. Для более качественной трамбовки желательно использовать электрический виброуплотнитель большой мощности.

Морозостойкость бетона разных марок: определение, как повысить с помощью добавок

2. Повышения морозостойкости можно добиться путем формирования дополнительных внутренних полостей. Для этого в состав цементного раствора примешивают специальные воздухововлекающие добавки для создания мелких резервных пор, которые могут быть заполнены, только если вода на них будет попадать под давлением.

3. И последний способ — добавить к готовой цементной смеси противоморозные присадки. К таким присадкам относятся мочевина, соли кальция и пр. При замерзании они образуют чешуйчатый лед, который менее разрушителен, чем обычный.

Иногда бывает достаточно всего лишь защитить поверхность бетона от прямого контакта с влагой. Для этого используются специальные гидроизолирующие материалы и растворы, например, битум или полимерная мастика.

Морозостойкость бетона разных марок: определение, как повысить с помощью добавок

Применение в строительстве

В частном домостроении готовую бетонную смесь используют чаще всего для заливки основания под здание. Бетон для фундамента выбирается с учетом типа сооружаемой конструкции и местных климатических условий.

1. Если нагрузка на основание будет небольшой, например, при строительстве каркасно-щитового дома или иного дачного сооружения лучше всего подойдет бетон М200. Для более тяжелых объектов, таких как дома из бруса, пеноблоков или кирпича потребуется приобрести цементный раствор М250 или М300. Для двухэтажных тяжелых зданий чаще всего заливается монолитный фундамент — в этом случае используется бетон марки не меньше чем М350.

Морозостойкость бетона разных марок: определение, как повысить с помощью добавок

2. Также нужно обращать внимание на характеристики почвы и грунта. Для средней полосы России подойдет М250, а вот на глинистых и суглинистых почвах, невзирая на тип сооружаемого здания, для фундамента можно применять только М350 и выше.

3. Класс F для любой марки бетона выбирается с учетом климатических условий региона.

4. Бетон М300 В22,5 с классом F150 или F200 является самым распространенным и применяемым в частном строительстве. Данная марка хорошо подходит не только для заливки фундамента, но и для производства монолитной плиты, изготовления чаши для бассейна и несущего перекрытия.

Похожие статьи
  • Сколько стоит куб бетона: в миксере с доставкой и без, цена разных марок

    Строительство даже небольшого загородного дома трудно представить без бетонных работ. А если под постройку еще и требуется мощный фундамент , то кубов...

  • Крыльцо из бетона: как сделать своими руками, пропорции бетонной смеси, варианты отделки

    Сделать крыльцо из бетона своими руками несложно. Но сначала нужно продумать все детали, чтобы, заходя в дом, вы не спотыкались об неудобные ступеньки, а...

  • Вибратор для бетона своими руками (площадочный и глубинный): схема, инструкция по шагам, чертежи

    Чтобы уплотнить, а значит, упрочить структуру бетона, необходимо воспользоваться специальным инструментом – вибратором. С его помощью несложно выгнать из...

genmontage.ru

"Морозостойкость бетона, способы ее повышения"

Выдержка из работы

Морозостойкость бетона, способы ее повышения Моргун А. Н.Моргун Алексей Николаевич /Morgun Alexey Nikolaevich — студент, кафедра организации строительства и управления недвижимостью,Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования Московский государственный строительный университет,Национальный исследовательский университет, г. МоскваАннотация: данная статья рассматривает проблему морозной деструкции бетонных конструкций под воздействием знакопеременных температур, а также уделяет внимание способам повышения морозостойкости. Поскольку бетон применяется при строительстве множества зданий и сооружений, в том числе особо опасных и технически сложных объектов, важной задачей является недопущение преждевременного разрушения конструкций от воздействия минусовых температур.Ключевые слова: бетон, железобетон, морозостойкость, цеолитсодержащие породы, демпфирующие добавки в бетоне.Бетон — искусственный каменный материал, получаемый в результате отвердевания тщательно подобранной, перемешанной и уплотненной смеси, состоящей из вяжущего вещества, воды, крупного и мелкого заполнителей и вводимых в ряде случаев специальных добавок.Несмотря на появление новых строительных материалов, до сих пор бетон, а также железобетон активно используются в строительстве. Особо развито сейчас монолитное домостроение, а бетон при этом считается основным конструкционным материалом. Его достоинством является универсальность, так как ему можно придать практически любую форму и изменять его свойства в широких пределах.Исследования конструкций из бетона и железобетона показали, что бетон около 70−80% от всех сооружений, покрытий и несущих конструкций подвержен морозной деструкции, а также воздействию агрессивных солевых растворов и реагентов. Именно из-за этих факторов сооружения из бетона, работающие в условиях высокой влажности и отрицательных температур, разрушаются еще до окончания срока их эксплуатации. В наше время бетон используется при строительстве транспортных объектов, гидросооружений, мостов, создания несущих опор и балок, а допускать риска их разрушения нельзя. Поэтому, проблема применения бетона, устойчивого к знакопеременным температурам и солевому воздействию, является актуальной на данный момент.Морозостойкость бетона характеризуется наибольшим числом циклов попеременного замораживания и оттаивания, которые способны выдерживать образцы 28-суточного возраста без снижения предела прочности при сжатии более чем на 25% и без потери в массе более 5%. Готовятся стандартные образцы и выдерживаются до полного насыщения водой, а после этого образцы замораживают при температуре -15 -17 С°, а затем оттаивают в воде с температурой +20 С°. При этом контролируют потерю прочности и потерю массы. Долговечность бетона оценивают степенью морозостойкости. По этому показателю бетоны делят на марки от F15 до F1500, где число после буквы F означает количество циклов попеременного замораживания и оттаивания (один цикл — одно замораживание и одно оттаивание) [1].Существует несколько гипотез, объясняющих природу внутриструктурного давления и снижения морозостойкости:1. Вода, заполняющая капиллярные поры бетона, обычно не в полном своем количестве превращается в лед из-за отсутствия необходимого объема, а также из-заневозможности превращения в лед в капиллярах с очень маленьким радиусом. На оставшуюся воду передается давление образовавшего льда. В результате вода давит на стенки пор, происходит постепенное разрушение. Данную гипотезу выдвинул русский военный инженер и ученый Н. А. Житкевич.2. В. М Москвин, М. М. Капкин, Б. М. Мазур и А. М. Подвальный развили гипотезу о морозном разрушении бетона на основе разницы коэффициентов линейного термического разрушения компонентов бетона. Заполнители бетона и сам бетон имеют различные коэффициенты линейного термического расширения. А при отрицательных температурах несовместимость составляющих бетона резко увеличивается. Однако такие термические напряжения играют важную роль лишь в ненасыщенном влагой бетоне. В наше время проводится множество испытаний бетона на воздействие отрицательных температур. На основе испытаний было выяснено, что при увеличении скорости замораживания бетона деструкция бетона соответственно ускоряется, но давление льда на стенки пор не увеличивается. Данный факт не может объяснить первая упомянутая выше гипотеза. Также установлено, что разрушение бетона при воздействии минусовых температур возможно и при заполнении водой менее чем на 90%, и это не является редким фактом.3. Указанные выше факты способна объяснить более совершенная гипотеза гидравлического давления Т. Пауэрса. Согласно гипотезе, основной причиной разрушения бетона при периодических циклах замораживания и оттаивания является гидравлическое давление, возникающее в порах и капиллярах бетона под влиянием замерзающей воды в результате сопротивления гелевой составляющей цементного камня. Также гипотеза утверждает, что в бетоне есть резервные воздушные поры. При большом количестве влаги избыточная вода вытесняется именно в эти поры. При этом не происходит нарушения структуры бетона. Разрушение произойдет в том случае, если условно замкнутые поры заполнятся водой и не смогут выполнять функции резервных. После оттаивания часть воды остается в резервных макропорах, заполняя их постепенно с каждым циклом замораживания и оттаивания. Итак, данная гипотеза объясняет тот факт, что скорость морозного разрушения бетона увеличивается с увеличением скорости замораживания, а также показывает важную роль условно замкнутых пор, способствующих повышению морозостойкости бетона. На основе этого мы можем сделать некоторый вывод: морозостойкость бетона зависит от его строения [3], [7], [2].Решение проблемы повышения морозостойкости бетона актуально в строительной области в последнее время. Именно это привело к изучению, появлению следующих способов увеличения циклов замораживания-оттаивания:1. Использование природных цеолитсодержащих пород (ЦСП)Исследования отечественных и зарубежных ученых показали, что долговечность бетона при попеременном замораживании-оттаивании в основном определяется морозостойкостью цементного камня. Ученые пришли к выводу, что одним из успешных способов повышения морозостойкости цементных композитов является введение в бетонную смесь специальных молотых твердых добавок. Однако изготовление таких добавок невыгодно с экономической точки зрения. Поэтому была предложена альтернатива выше указанным добавкам — молотые природные цеолитсодержащие добавки.В ходе экспериментов и составления графиков было установлено, что при оптимальной степени наполнения цементного композита ЦСП происходит увеличение прочности (на 15−20%), однородности пор (в 1,02−1,1 раза), их размеров (в 2−2,7 раза) и доли микропор (в 1,05−1,11 раза) по сравнению с незаполненными композитами. При этом долговечность конструкций, изготовленных из наполненных цеолитсодержащими породами цементных композитов (при степени наполнения 20%), работающих в условиях воздействия влаги и низких температур, повышена в 2−3 раза. Повышение прочности и однородности структуры бетона можно объяснитьориентирующим воздействием зерен наполнителя на продукты гидратации цемента и образованием кластерных структур. Кроме того, повышение физико-механических свойств цементных композитов, наполненных цеолитами, связано с наличием в цеолитовой фазе активных кремнезема и глинозема. Цеолиты, выступая в роли активных минеральных добавок, интенсивно связывают образующиеся в процессе твердения портландцемента гидроокись кальция и низкоосновные гидросиликаты и гидроалюминаты кальция. При введении цеолита в систему, свободная гидроокись кальция будет поглощаться цеолитом. Это приводит к ускорению структурообразования в системе. Итак, введение природных цеолитсодержащих пород способствует увеличению долговечности, морозостойкости бетона в 2−3 раза. При этом не требуется применение различных видов химических модификаторов бетона (гидрофобизирующие и гидрофилизирующие ПАВ, пластификаторы и суперпластификаторы, специальные противоморозные, воздухововлекающие и газообразующие добавки), что, несомненно, является положительным фактом, так как химическое воздействие нежелательно, например, для транспортных сооружений [1].2. Создание морозостойкой структуры цементно-песчаного раствора.Одна из причин, ограничивающих использование различных, в том числе местных материалов в бетонах — их низкая морозостойкость. Однако эти заполнители в какой то степени защищены от влияния низких температур цементно-песчаным раствором. Следовательно, создав морозостойкую структуру цементно-песчаного раствора, можно получить морозостойкий бетон с наполнителем, который традиционно считается неморозостойким (примером таких «нетрадиционных» заполнителей являются доломитовый щебень, который нельзя использовать для производства морозостойких бетонов, имеющих марку по морозостойкости выше 25). При данном методе применяется комплексная добавка СНВ (смола нейтрализованная воздухововлекающая) 0,05% + СДБ (сульфитно-дрожжевая бражка) 0,2% для обеспечения морозостойкости.Установлено, что образцы из раствора и бетона на доломитовом щебне могут выдержать 150 циклов замораживания и оттаивания (параллельные испытания бетона на известняковом щебне показали, что он способен выдержать лишь 50−60 циклов попеременного замораживания и оттаивания).Таким образом, установлена возможность использования доломитового щебня (имеющего согласно нормам низкую морозостойкость) для получения морозостойких бетонов. Это позволяет значительно расширить сырьевую базу заполнителей для изготовления морозостойких бетонов [5].3. Ячеистый бетон неавтоклавного твердения.В ячеистом бетоне неавтоклавного твердения, как правило, представляющего пенобетон с использованием в качестве вяжущего вещества портландцемента, содержится около 50−55% аморфной составляющей в виде гидроксильных фаз различной основности. Эта составляющая при действии давления от гистерезиса содержания льда, образующегося при понижении и повышении температуры бетона, обеспечит релаксацию напряжений за счет диффузионного перемещения частиц и геля и дислокаций, и более равномерного распределения давлений в кристаллогидратном каркасе. Таким образом, будет наблюдаться повышение морозостойкости, а также долговечности бетона.Данный вид бетона обычно применяют для возведения стеновых конструкций. Однако морозостойкость может оказаться недостаточной. Поэтому может потребоваться первичная и вторичная защита от воздействия низких температур, коррозии [4].4. Демпфирующие компоненты в виде маложестких песков для повышения морозостойкости бетонов.Морозостойкие бетоны на легких заполнителях, в особенности с использованием мелкого и крупного пористых заполнителей, имеют значительный недостаток —происходит значительная потеря статической прочности по сравнению с бетонами на плотных заполнителями.В опытах таких ученых, как Г. А. Франк и В. Ф. Знакомский замена плотных заполнителей на керамзит и керамзитовый песок обеспечила значительное повышение как морозостойкости, так и солестойкости бетона, но привела к 2,5−5-кратному снижению исходной прочности бетона на сжатие и 20−40%-ой потере прочности на растяжение при изгибе. Чтобы избежать снижения прочности бетона, был разработан более оптимальный состав бетонов с заменой части плотных заполнителей на пористые, когда потери статической прочности оказываются относительно умеренными. Это благоприятно не только для прочности, но и оптимизирует бетоны по морозостойкости. Технология изготовления таких бетонов сводится к замене части плотных заполнителей демпфирующими компонентами.Демпфирующим компонентам присущи жесткостные характеристики, зависящие от пористости бетона. Введение в бетон таких добавок, снижающих концентрацию напряжений на границе раздела фаз с различными упругими характеристиками, значительно уменьшает размах колебаний и пределы изменений максимальной и минимальной деформации и напряжений в процессе разрушения бетона. Механизм торможения процессов разрушения бетона определяется присутствием в нем «слабых» упруго-вязких и слоистых включений, снижающих локальные напряжения и гасящих энергию роста трещин.Применительно к морозостойкости, эффективными демпфирующими компонентами являются мелкоразмерные гранулы пенополистирола, которые при умеренной объемной концентрации сохраняют статическую прочность бетона на приемлемом конструкционном уровне. Гранулы пенополистирола способны на длительное время сохранять функцию резервных пор, а также обеспечивать функцию демпфирующих включений, в значительной степени разгружающих структурную ячейку на уровне мелкого заполнителя от внутриструктурных напряжений.Циклическое замораживание и оттаивание бетона с демпфирующими добавками протекает без проявления внутриструктурных повреждений с упрочнением и свидетельствует в целом о высокой стойкости структуры к многократно повторным воздействиям минусовых температур.Оптимальная концентрация демпфера для керамзитового песка повышенной прочности сочетается со сравнительно небольшими потерями по статической прочности, т. е в этом случае обеспечивается получение полноценных конструкционных бетонов повышенной морозостойкости.В качестве демпфирующих компонентов для повышения морозостойкости эффективны и другие поризованные минеральные компоненты в дисперсном виде, например, горелопородные пески силикатно-алюминатной минералогии, доменные гранулированные шлаки повышенной пористости.Однако у данного метода есть недостаток. В последние годы при возведении ограждающих конструкций массовое применение получает полистиролбетон низких марок средней плотности (D150-D250), ввиду незначительной массы крупноразмерных блоков и относительно невысокой трудоемкости их монтажа. Но применение полистиролбетона в жилищном строительстве в научном аспекте обосновано недостаточно. В частности, при использовании незначительной толщины штукатурного слоя для отделки наружной поверхности конструкции из полистиролбетона в жаркий период могут ускориться процессы старения гранул полистирола с их частичной сублимацией, что приводит к снижению его прочности и морозостойкости. В весенне-осенний период знакопеременные переходы температуры через нулевой уровень приведут к дополнительному снижению прочности полистиролбетона. Циклические воздействия высоких и знакопеременных температур могут значительно снизить эксплуатационную надежность и даже привести к разрушению наружной поверхности и соответственно контактной зоныполистиролбетона с отделочным слоем. Поэтому при высокой этажности и значительных ветровых нагрузках сохранность целостности зданий с использованием ограждающих конструкций из полистиролбетона требует уточненного расчетноэкспериментального обоснования.Негативным аспектом применения полистиролбетона в жилищном строительстве является и его потенциальная экологическая опасность, в том числе при пожаре. При использовании штукатурного слоя по металлической сетке для отделки поверхности стены внутри помещения (наиболее распространенный вариант) в зимнее время при высокой температуре отопительных элементов может произойти деструкция поверхностного слоя гранул полистирола и диффузия стирола в жилые помещения, что при недостаточной вентиляции будет негативно влиять на здоровье проживающих в них людей. Поэтому массовое применение полистиролбетона в строительстве для устройства наружных стен в жилых зданиях является научно необоснованным и преждевременным [4], [7].5. Применение добавок (система «Кальматрон»).Распространенным материалом, также способным повысить (или восстановить морозостойкость), является добавка «Кальматрон-Д». При применении данного состава марка по морозостойкости повышается на F100 (циклов), температура эксплуатации от — 60 до + 130 С0. Материал основан на взаимодействии в присутствии воды комплекса химически активных минеральных добавок с цементом, содержащимся как в самом «Кальматроне», так и в защищаемой бетонной конструкции. При этом образуется насыщенный электролитический раствор, который, благодаря осмотическим процессам, проникает вглубь структуры бетона по имеющимся в нем капиллярам, порам и трещинам даже навстречу давлению воды. И уже внутри бетона из этого раствора вырастают кристаллические новообразования игольчатой и пластинчатой формы, которые, разделяя имеющиеся пустоты и поры на многократно более мелкие, уплотняют структуру бетона. При этом бетонная конструкция остается паропроницаемой.«Кальматрон» применяется при строительстве резервуаров, фундаментов, плотин, шахт, подвальных помещений, хранилищ нефтепродуктов, метрополитенов, тоннелей, причалов, мостовых сооружений, бетонных дамб [6], [8].Итак, создание морозостойкого бетона и увеличение морозостойкости бетона в процессе эксплуатации является важной проблемой в строительстве ввиду широкого применения бетона в строительных конструкциях и при строительстве дорог.Наиболее успешным способом увеличения морозостойкости является введение в бетонную смесь природных цеолитсодержащих пород. Кроме выгоды с экономической точки зрения, в данном случае увеличивается морозостойкость, долговечность и прочность бетона. Важным аспектом является и отсутствие экологической опасности при недостаточной вентиляции, в отличие от метода с применением полистиролбетона.Литература1. Использование природных цеолитсодержащих пород для повышения морозостойкости бетонов транспортных сооружений. / К. В. Оськин. // Транспортное строительство. — 2008. — № 7. — С. 16−18.2. Определение конкретных значений морозостойкости бетона при испытаниях базовыми методами ГОСТ 10 060.0 — 10 060. 2−95. / В. Г. Бойко. // Бетон и железобетон. — 2010. — N 6. — С. 19−22.3. Особенности морозно-солевого воздействия на свойства аэродромного бетона. / С. Н. Толмачев, И. Г. Кондратьева. // Строительные материалы. — 2011. — N 3. — С. 107−110.4. Структурные зависимости морозостойкости ячеистого бетона. / Е. Г. Величко. // Строительные материалы. — 2012. — N 4. — С. 73−75.5. Определение морозостойкости крупного заполнителя для тяжелых бетонов. / Л. М. Добшиц. // Бетон и железобетон. — 2012. — N 4. — С. 16−20.6. Эксплуатационные характеристики бетона строительных конструкций с применением системы «Кальматрон». / С. Н. Леонович, Н. Л. Полейко, С. В. Журавский, Ю. Н. Темников. // Строительные материалы. — 2012. — N 11. — С. 64−67.7. Структурообразование и разрушение цементных бетонов. Бабков В. В.- Мохов, В. Н.- Капитонов С. М.- Комохов П. Г.8. Официальный сайт группы компаний «Кальматрон», добавки в бетон.[Электронный ресурс]:http: //kalmatron. ru/products/kompleksnaya_dobavka_v_beton/kalmatrond/ (датаобращения: 13. 08. 2015).

Показать Свернуть

mgutunn.ru

Морозостойкость бетона, способы ее повышения

Страница 2 из 4

 

Бетон – искусственный каменный материал, получаемый в результате отвердевания тщательно подобранной, перемешанной и уплотненной смеси, состоящей из вяжущего вещества, воды, крупного и мелкого заполнителей и вводимых в ряде случаев специальных добавок.

Несмотря на появление новых строительных материалов, до сих пор бетон, а также железобетон активно используются в строительстве. Особо развито сейчас монолитное домостроение, а бетон при этом считается основным конструкционным материалом. Его достоинством является универсальность, так как ему можно придать практически любую форму и изменять его свойства в широких пределах.

Исследования конструкций из бетона и железобетона показали, что бетон около 70-80 % от всех сооружений, покрытий и несущих конструкций подвержен морозной деструкции, а также воздействию агрессивных солевых растворов и реагентов. Именно из-за этих факторов сооружения из бетона, работающие в условиях высокой влажности и отрицательных температур, разрушаются еще до окончания срока их эксплуатации. В наше время бетон используется при строительстве транспортных объектов, гидросооружений, мостов, создания несущих опор и балок, а допускать риска их разрушения нельзя. Поэтому, проблема применения бетона, устойчивого к знакопеременным температурам и солевому воздействию, является актуальной на данный момент.

Морозостойкость бетона характеризуется наибольшим чис­лом циклов попеременного замораживания и оттаивания, кото­рые способны выдерживать образцы 28-суточного возраста без снижения предела прочности при сжатии более чем на 25 % и без потери в массе более 5 %. Готовятся стандартные образцы и выдерживаются до полного насыщения водой, а после этого образцы замораживают при температуре -15 -17 С°, а затем оттаивают в воде с температурой +20 С°. При этом контролируют потерю прочности и потерю массы. Долговечность бетона оценивают степенью морозостойкости. По этому показателю бетоны делят на марки от F15 до F1500, где число после буквы F означает количество циклов попеременного замораживания и оттаивания (один цикл - одно замораживание и одно оттаивание) [1].

Существует несколько гипотез, объясняющих природу внутриструктурного давления и снижения морозостойкости:

1. Вода, заполняющая капиллярные поры бетона, обычно не в полном своем количестве превращается в лед из-за отсутствия необходимого объема, а также из-за невозможности превращения в лед в капиллярах с очень маленьким радиусом. На оставшуюся воду передается давление образовавшего льда. В результате вода давит на стенки пор, происходит постепенное разрушение. Данную гипотезу выдвинул русский военный инженер и ученый Н. А. Житкевич.

2. В. М Москвин, М. М. Капкин, Б. М. Мазур и А. М. Подвальный развили гипотезу о морозном разрушении бетона на основе разницы коэффициентов линейного термического разрушения компонентов бетона. Заполнители бетона и сам бетон имеют различные коэффициенты линейного термического расширения. А при отрицательных температурах несовместимость составляющих бетона резко увеличивается. Однако такие термические напряжения играют важную роль лишь в ненасыщенном влагой бетоне. В наше время проводится множество испытаний бетона на воздействие отрицательных температур. На основе испытаний было выяснено, что при увеличении скорости замораживания бетона деструкция бетона соответственно ускоряется, но давление льда на стенки пор не увеличивается. Данный факт не может объяснить первая упомянутая выше гипотеза. Также установлено, что разрушение бетона при воздействии минусовых температур возможно и при заполнении водой менее чем на 90 %, и это не является редким фактом.

3. Указанные выше факты способна объяснить более совершенная гипотеза гидравлического давления Т. Пауэрса. Согласно гипотезе, основной причиной разрушения бетона при периодических циклах замораживания и оттаивания является гидравлическое давление, возникающее в порах и капиллярах бетона под влиянием замерзающей воды в результате сопротивления гелевой составляющей цементного камня. Также гипотеза утверждает, что в бетоне есть резервные воздушные поры. При большом количестве влаги избыточная вода вытесняется именно в эти поры. При этом не происходит нарушения структуры бетона. Разрушение произойдет в том случае, если условно замкнутые поры заполнятся водой и не смогут выполнять функции резервных. После оттаивания часть воды остается в резервных макропорах, заполняя их постепенно с каждым циклом замораживания и оттаивания. Итак, данная гипотеза объясняет тот факт, что скорость морозного разрушения бетона увеличивается с увеличением скорости замораживания, а также показывает важную роль условно замкнутых пор, способствующих повышению морозостойкости бетона. На основе этого мы можем сделать некоторый вывод: морозостойкость бетона зависит от его строения [3], [7], [2].

scienceproblems.ru