Технология прогрева бетона. Прогрева бетона


Технология прогрева бетона

Общая информация

В процессе осуществления строительных и ремонтных работ в условиях низких температур для ускорения отвердения бетонного раствора следует использовать прогрев бетона. Он может быть осуществлен с использованием самого различного оборудования: матов, греющих щитов, электродов, которые выполнены из арматурной стали, специальных электродов для стен, перекрытий.

Нужно иметь специальные навыки, что бы производить процедуру прогревания бетона.

Для того чтобы применять метод бетонного прогрева, человек должен обладать специальными навыками. В случае если будет выполнена неправильная установка греющего оборудования, есть шанс того, что будет происходить пересушивание раствора в зонах приложения электродов. В процессе использования подобной методики следует учитывать, что прочность бетона в результате нагрева не превысит 50% от Rзд, потому как при высыхании материала строительный ток, а вместе с ним и прогрев бетона, прекращается.

Применение электропрогрева с экономической точки зрения оправдано практически в любых условиях даже несмотря на то, что имеется достаточно высокая стоимость щитов для прогрева бетона и повышение расхода арматурной стали.

Бетон набирает прочность за 28 дней.

Основное значение при расчете сроков твердения будет иметь марка бетона. Это характеристика, которая определяет прочность раствора на сжатие. Она измеряется в килограммах на сантиметры.

Значения прочности, которое заявлено маркой, бетон может достигнуть за 28 дней при нормальных условиях. В случае если повысить температуру материала, этот срок способен значительно сократиться. Если бетонный раствор замерзнет, процесс твердения остановится, возобновляясь только лишь после оттаивания. В случае если раствор из бетона до момента критического понижения температуры не успеет набрать 70% прочности, соответствие его марки считается утраченным.

Контактный способ

В процессе проведения ремонтных и строительных работ чаще всего применяется контактный способ электропрогрева. В данном случае тепло будет передаваться бетонному раствору с поверхности проводов, которые нагреваются в момент передачи электрического тока до 80 °C. Применение подобного метода возможно благодаря хорошему уровню теплопроводности бетона.

Схема контактного способа электропрогрева для прогревания бетона.

Для прогрева бетонного раствора и достижения им необходимых показателей мощности оптимальнее всего будет использовать кабели со стальной жилой, которые допускают нагрузку от 80 ватт на 1 м. Затраты электроэнергии на обогрев будут зависеть от соотношения площади поверхности, которая излучает тепло, и объема прогреваемого материала. Помимо того, значение будет иметь и температура окружающей среды, уровень защиты полностью всей конструкции от охлаждения и скорости разогрева бетона.

Для контактного прогрева понадобится низкое напряжение при высокой силе тока. Для выполнения подобного условия лучше всего использовать специальные подстанции, к примеру такие, как ТМОБ-63 либо КТПТО-80. Необходимо учитывать, что установочная мощность подобного оборудования во многом будет определяться напряжением во время нагрева.

Количество подстанций, которые будут необходимы на объекте проведения работ, будет определяться суточной нормой для объемов укладки строительного материала и мощностью, которая необходима для его прогрева. Оборудование, которое понадобится для того, чтобы был выполнен прогрев бетона, должно быть установлено на каждой захватке.

Время, которое понадобится для того, чтобы был выполнен прогрев бетона до достижения заявленной им прочности, определяется на основе результатов постоянных замеров температур раствора и силы тока во всех греющих элементах. Для того чтобы прогрев бетона был успешно осуществлен, понадобится с точностью соблюдать технологию.

Подготовка к прогреву

Прогрев бетона осуществляется только после полностью завершенной укладки бетонного раствора.

Подготовка к процедуре может начинаться исключительно после того, как будут уложены закладные детали и арматура, а также проведена электросварка арматуры. Далее следует монтировать готовые греющие элементы. Важно избежать при этом натяжения обогревающих проводов на каркасы арматуры. Лучше всего будет проложить между ними. В случае если арматура не применяется в конструкции, следует использовать готовые инвентарные шаблоны. После выполнения процесса монтажа провода должны быть обязательно окружены бетонным раствором таким образом, чтобы они не касались деревянных деталей конструкции либо опалубки.

Процесс проведения греющих элементов возможен исключительно после проверки мегомметром. Нагрузка фаз низкой стороны подстанции обязательно должна быть равномерной. Выводы обогревательных проводов должны иметь сечение, увеличенное в 2-3 раза. В случае если последнее условие нельзя выполнить, рекомендуется подключать отрезки алюминиевых проводов с изоляцией места присоединения к трубке из пластмассы.

Схема прогрева бетона.

Прогрев бетона должен выполняться не ранее чем будет завершена полностью укладка строительного раствора. Все греющие элементы должны быть размещены с выполнением всех требований техники безопасности. В конструкциях, которые прогреваются, обязательно должны быть изготовлены отверстия, которые необходимы для того, чтобы выполнять замеры температуры. Пусковая сила тока в элементах, которые греются, должна замеряться в процессе включения и 1 раз в час на протяжении первых трех часов нагрева.

В случае если показатели будут нормальными, температура в последствии должна замеряться 1 раз в смену. Бетонный раствор в результате электропрогрева должен набрать не менее 50% прочности, которая была заявлена. Практически во всех случаях соответствие самому последнему требованию будет определяться путем испытания контрольных образцов.

О квалификации персонала

Процесс прогревания бетона, электромонтаж и другие работы, связанные с электричеством, выполняются электромонтером.

Контроль соблюдения техники безопасности обязательно должен осуществляться ИТР, который имеет как минимум 4 квалификационную группу по электробезопасности. Организация электрообогрева должна соответствовать всем требованиям, которые содержатся в СНиП 111-4-80/гл.11 и ГОСТ12. 1.013-78/ “Бетонные и железобетонные работы и электробезопасность”.

Все работы, которые необходимы для прогрева бетона, например, такие как контроль функционирования электрооборудования, монтаж электрооборудования, запуск системы обязательно должны выполняться электромонтерами, которые имеют третью либо большую квалификационную категорию. К выполнению замеров температуры и силы тока может быть допущен исключительно персонал, который имеет вторую либо большую квалификационную группу.

Персонал других специализаций, который выполняет свою работу на посту электрообогрева либо в непосредственной от него близости, должен обязательно пройти инструктаж по всем правилам электробезопасности. Пост электрообогрева должен ограждаться в соответствии с ГОСТ 23407-78. Кроме того, он должен быть оборудован световой сигнализацией и хорошо освещен.

Процесс подключения оборудования должен производиться исключительно при отключенном электрическом токе.

Очень важно исключить любую вероятность появления сторонних лиц на посту в период работы оборудования. Выполнение данных требований может позволить избежать травматизма в процессе проведения работ, которые необходимы для прогрева бетона.

Влияние замораживания

Бетонные работы в зимнее время выполняются при температуре от 0 до +5 градусов.

При проведении бетонных работ зимние условия не определяются календарным временем. Считается, что наступают они тогда, когда средняя температура за сутки опускается до +5 °C, причем в течение суток должно происходить снижение температуры не более чем до 0 °C. В случае если температура стала отрицательной, вода, которая не вступила в реакцию с цементом, превратится в лед, который в качестве твердого вещества не будет участвовать в химических процессах. Следствием подобного превращения станет прекращение процесса гидратации цемента, который отвечает за твердение.

Вместе с этим в растворе будут возникать силы внутреннего давления, которые связаны с увеличением воды в объеме при замерзании ориентировочно на 9%. Если бетонная структура еще не окрепнет, она не будет способна сопротивляться подобным силам, вследствие чего разрушится. В процессе дальнейшего размораживания лед способен снова превратиться в воду, что поспособствует возобновлению процесса гидратации. Однако разрушенные связи в структуре бетона до конца не восстанавливаются.

В процессе замерзания будет происходить отжимание цементного молочка от арматурной поверхности. Все это способно значительно снизить прочность будущих конструкций, сцепление арматуры и бетона, уменьшить плотность строительного раствора, следовательно, долговечность строения.

Условия бетонирования

Температурный режим играет большую роль в прочности бетона.

Если до момента замерзания строительный раствор приобретет определенную прочность, то процессы, которые были описаны выше, не будут на него действовать. Этот порог зависит от марки. Для железобетона и бетона с ненапрягаемой арматурой до марки В15 он составит 50% проектной прочности, для марок В15 и В22,5 – 50%, марок В30 и В40 – 30%. В случае если в конструкции имеется предварительно напрягаемая арматура, критическая прочность для всех марок бетонов будет равна 70%. Для специальных конструкций, которые будут работать в особых условиях, подобный порог определяется как 100% проектной прочности.

Большое значение для набора прочности имеет температурный режим, в котором во время твердения выдерживают строительный раствор. При повышении температуры ускорятся процессы взаимодействия цемента и воды, при снижении – замедлятся. В связи с этим при устройстве монолитных бетонных конструкций в зимний период времени следует создать и поддерживать все определенные влажностно-температурные условия, которые дают возможность конструкции набирать необходимую прочность в самые короткие сроки при наименьших трудо- и энергозатратах.

Метод “термоса”

Схема бетонирования с использованием метода термоса.

Данный метод заключается в том, что бетонную смесь, которая имеет температуру 15-30 градусов, следует уложить в утепленную опалубку. Конструкция наберет заданную прочность с помощью экзотермического выделения цемента к моменту остывания до 0 градусов и начального тепла бетонной смеси. Количество экзотермического тепла, которое выделяется при реакции воды и цемента, будет зависеть от вида цемента, который применяется.

При применении подобного метода для изготовления смеси бетона рекомендуется использовать быстротвердеющие и высокоэкзотермические портландцементы.

Одной из разновидностей данного метода является термос с добавками (хлористый кальций, углекислый калий и др.), которые ускоряют процесс твердения.

o-cemente.info

схема укладки и подключения, расчет

Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.

Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.

Прогрев проводом ПНСВ

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Применение кабеля ПНСВ

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

Схема подключения

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Этапы прогрева бетона

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,015 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Зимнее бетонирование

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

betonpro100.ru

Зимний прогрев бетона

 

масляный понижающий трансформатор

Зимнее бетонирование и прогрев бетона

 

С наступлением холодов  и с повышением отрицательных температур начинается головная боль при бетонировании строительных  объектов.  Что такое прогрев бетона я знаю не понаслышке,  так как занимался  этой работой  три зимы подряд.  Так уж вышло, что начинал я с нуля, и всю информацию искал в интернете.  Перечитал кучу информации о зимнем бетонировании, но к сожалению  не было финансовой возможности опробовать все способы прогрева бетона.  Свой выбор  я сделал на прогреве с помощью понижающего трансформатора и греющих (обогревающих) проводов марки ПНСВ.

Такой способ  относительно дешевый и достаточно эффективен при температуре до -17С.

Объем работы у меня был достаточно большой, в одну заливку  приходилось греть 90м3 бетона. 

Строили мы 16 этажный монолитно-кирпичный  дом, на один этаж  шло две заливки бетона.  Заливка плиты и вертикали, по объему они были примерно одинаковы (90-100м3).

 

Если вы читаете до сих пор эту статью, то значит  вам нужно руководство по прогреву бетона, и вполне возможно, что уже прочитали кучу информации по этому поводу.  Я опишу, как грел, а ваше дело сделать выводы.  Греть бетон по науке у меня не было возможности, но тем не менее я считаю что справился со своей задачей.

Итак, в моем распоряжении был понижающий трансформатор на 80 Kw.   Я не хуже вас знаю, что для прогрева 90м3 бетона это недостаточная мощность.  Но так как температура не поднималась выше -18С  то я не заморозил  ни одного грамма бетона))).  Хватит уже лирики, давайте перейдем к  описанию процесса прогрева бетона.

 

ПНСВ

Подготовка к прогреву

 

Правильная подготовка сэкономит ваше время и физические усилия.  Начинать нужно с подготовки греющих петель провода  ПНСВ.  Для прогрева плиты я брал длину петли в 17 метров, так как подключал всю схему в «звезду».  Для прогрева вертикали длина петли составляла 20 метров  подключал в «треугольник».

 На плиту у меня уходило в среднем  60-90 петель, на вертикаль  порядка 60 – 80 петель.

Подготовка петель заключает в себе два этапа, нарезка и присоединение холодных концов.

Мерить нужно точно иначе будет перекос фаз на понижающем трансформаторе и при короткой длине петля сгорит, а если будет слишком длиной, то будет слабо греть.  Для точной и быстрой мерки я сделал шаблон из куска фанеры и наматывал провод с бухты на него.  За два часа я подготавливал петель на всю заливку.

Теперь необходимо присоединить к петлям холодные концы которые  я делал из одинарного алюминиевого провода в 4 квадрата.  Присоединение  делается при помощи скрутки длиной в 5см.  скрутку необходимо заизолировать ХБ  изолентой, так как другая будет плавиться от нагрева проводов.  Готовые петли должны быть аккуратно свернуты, для того что бы не, тратить время на распутывание при прокладке.

 

                           Еще статьи по прогреву бетона

 

 

заливка плиты

При прогреве плиты я прокладывал кабеля  идущие от трансформатора(у меня были КГ медный на 70 квадрат). этажом ниже, цеплял я его по краю плиты на домкраты которые держат  опалубку заливаемой плиты. При подготовке петель для прогрева необходимо учитывать длину холодного конца, так как  КГ у меня шел на нижнем этаже, то длина холодного конца была примерно три метра.

Начинать прокладку греющих петель необходимо до того как монолитчики смонтируют верхний слой арматуры, прокладываем его по арматуре подвязывая изолированным проводом. Рекомендуется прокладывать в два уровня, но я прокладывал в один.  Расстояние между петлями 30-40 см в зависимости от погодных условий. Петли ложил поперек плиты, холодные концы сбрасывал с краю вниз до кабелей КГ идущих этажом ниже.

греющие кабеля        плита прогрев    трансформатор

С одной стороны у меня шло три кабеля КГ от трансформатора, а с другой 1 кабель(он не присоеденен к трансформатору)  то есть он был общей точкой схемы на него цеплялись все первые холодные концы. На три кабеля с другой стороны равномерно цеплялись вторые холодные концы прогревочных петель. Для быстроты присоединения я использовал  шуроповёрт и саморезы с широкой шайбой. С кабелей КГ изоляция не снимается, просто защищаем холодный конец и заворачиваем его под шайбу самореза, который вкручиваем прямо в кабель.  Контакт получится надежный кабель конечно чуть портится, но его еще хватит на несколько зимних сезонов. 

 

опалубка прогрев

 

При прогреве вертикали (колон, диафрагм, стен лифтовых)  три кабеля от трансформатора прокладываются вдоль всех колон, наиболее экономичный маршрут определите сами. Петли на колонах необходимо прокладывать с внутренней стороны арматуры, иначе они повредятся опалубкой при установке.  Крепим на совесть иначе они сползут. Два холодных конца выводим вниз колоны, для того что бы они не перебились опалубкой делаем под них маленькую штробу заранее.  Так как вертикаль мы греем «треугольником» то у нас  три кабеля от трансформатора (общая точка не нужна).  Цепляем равномерно петли на кабеля при помощи шуруповерта и саморезов. 

вертикаль петли             в петля

Прогрев бетона

 

После того как все петли присоединены ( присоединяем  в процессе заливки)  и заливка закончена  включаем трансформатор после проверки на возможные  упущения.

На моем трансформаторе было четыре ступени прогрева, начинать необходимо с первой ступени (наименьший вольтаж),  включив трансформатор, берем токовые клещи и измеряем ампераж  на каждой петле и на общих кабелях. Если на общих кабелях большой перекос фаз, то выравниваем его путем переброса петель.  Меряем петли, на первой ступени при прогреве плиты «звездой»  на петле должно быть не менее 14 ампер. Если нет на ней нагрузки значит она перебита, но особо не переживайте, теплоотдача у бетона хорошая так что соседние петли вытянут этот участок. Плиту желательно прикрыть хотя бы клеенкой а при усиленном морозе потребуются теплые маты.

При прогреве вертикали «треугольником» на петле должно быть  18-19 ампер, бывает что больше – это признак повреждения изоляции петли. Обычно по мере высыхания бетона ампераж падает и петля остается дееспособной.  При обрыве петли необходимо срочно воткнуть электрод в качестве, которого используйте арматуру 6-10 мм.  На колону достаточно одного электрода,  который расположен ровно посередине. Кидаем на него фазу, бетон греется  за счет влаги в бетоне между фазой от трансформатора и землей.  Греть бетон электродами это самый простой способ но слишком энергозатратный, на один электроде  50 ампер на первой ступени. Так что одним трансформатором много не вытянешь.

Прогрев на первой ступени займет два часа и как только общий ампераж упадет на 20% включаем вторую ступень.  По мере того как амперы падают, повышаем ступени на трансформаторе.  Обязательно меряйте амперы на петлях, петля максимум выдержит 29-30А и может если на ней уже есть 28А не стоит повышать ступень трансформатора. Процесс сушки бетона у меня длился двое- трое суток, и этого хватало при -15С.

Если вы строительный электрик то вполне разберетесь в написанном выше, прогревать бетон так как требует  Гост конечно лучше и безопасней но не всякий строительный участок может позволить себе такую роскошь.  У меня в помощниках было два таджика, и мы вполне справлялись со своей задачей, через 12 часов прогрева тепло от бетона ощущалось даже через опалубку вертикали.  Да и на плите когда приложишь руку явно ощущалась плюсовая температура.

 

При бетонировании небольших обьемов возможно использовать  сварочный аппарат  вместо прогревочного трансформатора.

elektro-blog.ru


Смотрите также