Кислая смесь для разрушения бетона. Уменьшение бетонного слоя. Когда применяются химические составы. Смесь для разрушения бетона


Жидкость разрушающая бетон. Почему появляется коррозия бетона и как с ней справиться. Смесь для разрушения бетона

Как разрушить бетон химическим и механическим способами?

Дата: 11 января 2017

Просмотров: 6828

Коментариев: 0

Разрушение бетона: способы и инструкции

Бетон традиционно применяется при строительстве объектов. Многим известно, как приготовить качественную бетонную смесь и выполнить заливку фундамента. В ряде случаев возникает необходимость выполнить демонтаж бетонной конструкции. Специалистам по строительству приходится задумываться, как химическим способом разрушить бетон, так как не всегда имеется возможность применить специальную технику, взрыв или механические средства разрушения.

Сегодня существует ряд недорогих, проверенных «тихих» химических методов разрушения бетонного монолита. Применяя их, можно избежать механического воздействия на массив и, в стесненных условиях, выполнить разрушение армированного бетона без шума, вибрации, пыли и осколков.

Бетон — материал, используемый в строительной отрасли

Используя проверенные технические решения, можно выполнить разрушение бетона за ограниченное время, ликвидировать аварийные, утратившие актуальность, строения и начать возведение новых объектов. Рассмотрим известные методы нарушения целостности бетона. Остановимся более подробно на химических способах разрушения.

В каких случаях разрушают бетонные сооружения?

При выполнении современных строительных мероприятий часто возникают ситуации, когда необходимо нарушить целостность бетона. Старые железобетонные конструкции уничтожают, если необходимо:

  • демонтировать часть старого основания;
  • снести ветхое здание;
  • выполнить перепланировку;
  • осуществить постройку нового строения;
  • заложить новый фундамент.

Методы разрушения бетона

Применяемые в строительстве технологии, направленные на нарушение целостности бетонного массива, можно условно разделить на две категории:

  • Методы механического воздействия, предусматривающие использование тяжёлого ударного инструмента, перфораторов, отбойных молотков, тяжелых кувалд, применение специального алмазного инструмента, а также паяльных ламп и воды.

В ходе проведения строительных или ремонтных работ приходится уничтожать старые изделия из железобетона, чтобы возвести новые строения

  • Способы химического разрушения, позволяющие разрушить бетон, с применением специального порошка, значительно расширяющегося в объеме при определенных условиях, или кислой смеси.

С целью принятия решения об использовании наиболее подходящего метода нарушения целостности бетона, познакомимся с ними более детально.

Простые механические способы

Методы разрушения бетона с помощью механических средств отличаются экономичностью, доступностью, однако, в ряде случаев, требуют значительного времени для получения необходимого эффекта:

  • эффективность применения кувалды или мощного перфоратора зависит от физической подготовки рабочего, который осуществляет разрушение конструкции;
  • использование воды и паяльной лампы позволяет постепенно разрушать материал путем локального нагрева поверхности и полива ее охлажденной водой. Через несколько циклов нагрева появится сеть трещин, с которыми можно легко справиться, используя кувалду или отбойный молоток;
  • применение алмазного инструмента положительно себя зарекомендовало при работе с железобетонными конструкциями, независимо от их размеров;
  • выполнение группы отверстий, в которые вбивается острая пика от перфоратора, позволяет отколоть крупные куски от бетонного монолита;

Механическим способом бетонное изделие разрушается на куски при помощи кувалды

  • постепенное увлажнение деревянных пробок, вставленных с натягом в расположенные по определенной конфигурации отверстия, позволяет расколоть монолит после их расширения. Расширяясь до 15% собственного объема, древесина разрывает по необходимой линии бетонные глыбы, однако для получения эффекта необходимо не меньше 10 дней.

Таковы механические методы разрушения, требующие значительной физической подготовки персонала и времени для достижения требуемого эффекта.

Химические средства

К химическим средствам, позволяющим демонтировать бетонные конструкции, относятся:

  • Смеси с повышенной кислотностью, которые за ограниченное время растворяют бетон, нарушают его целостность и обеспечивают возможность удаления кирпичей, остатков бетона. Основой кислотных составов является концентрированная соляная кислота и специальные ингибиторы, глубоко проникающие в массив, расширяющие его. Использование кислотных составов требует обязательного применения средств защиты для работающего персонала.
  • Порошки специального назначения, обладающие увеличенным коэффициентом расширения, которыми заполняются предварительно подготовленные отверстия. Реализация процесса требует значительных финансовых затрат, однако позволяет достичь требуемого результата в течение суток, используя при этом минимальное количество рабочей силы.

Химические средства используют для разрушения прочных строительных материалов, поскольку при их использовании исключены возгорания и взрыв

Когда применяются химические составы?

Технологии ликвидации цементных и бетонных конструкций положительно зарекомендовали себя на практике. Химические методы обладают рядом положительных моментов, позволяющих:

  • выполнить демонтаж в стесненных условиях действующего объекта;
  • вывести из эксплуатации постройку без применения тяжелой техники в условиях городской застройки;
  • ликвидировать бетонную конструкцию без шумовых эффектов, высокой концентрации пыли;
  • осуществить ликвидацию бетонных конструкций без применения алмазной резки.

Использование кислой смеси

Ликвидация прочных железобетонных конструкций часто производится с использованием кислой смеси, принцип действия которой основан на разрушении кислотой бетона. Использование соляной кислоты, которая растворяет массив, позволяет размягчить твердое вещество. Для этого достаточно обработать соляной кислотой разрушаемую поверхность.

Выполнение работ следует осуществлять с особой степенью осторожности, чтобы агрессивный раствор не попал на открытые части тела или слизистую оболочку. В состав разрушающей смеси вводятся специальные ингибиторы, которые, смешиваясь с кислотой, образуют раствор с высокой степенью агрессивности.

Данная химическая технология позволяет не только размягчить массив, но и, в дальнейшем, удалить бетон, извлечь из него кирпич, блоки. Если под воздействием одноразовой обработки массив не потерял прочность, процесс выполняется повторно.

sevparitet.ru

Разрушение бетона с использованием химических реактивов | ImhoDom.Ru

В течение последних лет в качестве альтернативной технологии взрыву во все большей степени используются химические реактивы для статического расширения. Поскольку действие расширяющих реактивов основано на химическом процессе, они в течение 10—12 часов способны создать необходимые разрушающие усилия. Однако новейшие технологии позволяют уменьшить это время до 30 минут. Это достигается за счет помещения в отверстие вместе с расширяющим реактивом нагревательного элемента.

При смешивании НРС-1М с водой образуется смесь (суспензия), которая, будучи залита в частично или полностью замкнутую полость (например, шпур) в каком-либо объекте, постепенно, в результате реакции гидратации порошка, твердеет и увеличивается при этом в объёме. Количество воды в порошке НРС-1М не должно превышать 30…35%. В противном случае давление расширения резко снижается. Увеличение объема сопровождается развитием давления от 50 до 150 мПа на стенки шпура, величина которого зависит от содержания в порошке СаО. При этом в теле разрушаемого объекта развиваются напряжения, значения которых может превышать его предельную прочность при растяжении, что и приводит к разрушению объекта. Эффект разрушения выражается в образовании в теле объекта трещин с их развитием во времени.Обычно образование трещин происходит в зависимости от температуры объекта и его характеристик в пределах от 12 до 20 часов. Чем выше предел прочности, тем больше время образования трещин. Повышение температуры объекта способствует ускорению образования трещин.

Преимущество использования расширяющихся реактивов заключается в отсутствии шума, вибрации и летящего мусора при разрушении бетона. К сожалению, при необходимости образования трещины точно вдоль конструкции расстояния между отверстиями для зарядов должны быть уменьшены. Недавно началось применение отверстий с надрезами для образования трещины в нужном направлении.

В институте ВНИИ разработано и выпускается невзрывчатое разрушающее средство (НРС-1), представляющее собой негорючий невзрывоопасный порошок с усилием разрушения более 30 МПа. Разрушение бетонной конструкций, например, фундаментного блока ФБС, происходит в результате расширения залитой в пробуренные шпуры смеси порошка с водой и роста вещества кристаллизации.

Развитие напряжений по всей глубине шпура приводит в момент превышения прочности при растяжении материала к образованию в нем направленных трещин. Применение НРС-1 обеспечивает бесшумное направленное разрушение бетона без вибрации и выброса твердых и газообразных продуктов реакции.

Чтобы разрушить бетон смесь помещается в заранее просверленные отверстия диаметром 38-80 мм с расстоянием между ними, превышающим в 8 раз диаметр отверстия. Количество реактива, требующегося для 1 м просверленного отверстия, зависит от диаметра отверстия.

• Например, для отверстия диаметром 38 мм — 1,6 кг, для отверстия диаметром 51 мм — 3,3 кг. При расширении смеси через 24-48 часа достигается давление до 30 МПа. Собранный лом с места демонтажных работ транспортируется на завод по производству заполнителей, и полученный заполнитель отправляется снова на бетонный завод (две транспортные операции).

Оборудование для получения заполнителя из бетонного лома иногда устанавливают непосредственно на месте демонтажных работ, и полученный заполнитель отправляется на бетонный завод или объект (одна транспортная операция).

 

Где купить эту смесь и подробные технологии работ см. здесь:

http://www.izon.nm.ru/1NRS.htm

www.imhodom.ru

характеристика составов для ремонта железобетонных конструкций

 

Характеристики и сфера примененияКонструкции из бетона являются крепкими и долговечными, но со временем на поверхности появляются трещины и сколы, например, из-за непомерных нагрузок. Такую ситуацию поможет исправить ремонтная смесь для бетона. Чтобы выбрать самую лучшую, необходимо ознакомиться с характеристиками, описанием и видами этого товара.

Характеристики и сфера применения

Несмотря на прочность, бетон имеет свойство изнашиваться: на нем появляются мелкие дефекты, пустоты, провалы, трещины и сколы. Для устранения таких явлений используются специальные составы для ремонта.

Состав этой продукции подбирается так, чтобы обеспечить плотное сцепление бетона со смесью. В ее характеристики входят:

  • Виды ремонтного составаустойчивость к морозам;
  • проницаемость пара;
  • длительность эксплуатации;
  • отталкивание влаги;
  • антисептические свойства;
  • степень сцепления с бетоном.

При долговременной эксплуатации оснований из бетона происходит его изнашивание. Следующие случаи требуют ремонтного вмешательства:

  • трещины и дефекты;
  • сколы, оголяющие арматуру;
  • пыль;
  • коррозия;
  • образование пустот и раковин;
  • выбоины.

При ремонте и выравнивании следует выбирать характеристики с более высокими показателями. И также необходимо обращать внимание на такие свойства, как размер усадки, сроки застывания и расход материала.

Виды ремонтного состава

В зависимости от сферы применения смеси для ремонта железобетонных конструкций разделяют на несколько разновидностей. Они, в свою очередь, составляют следующую классификацию:

  1. Степени разрушения бетонаСмеси для горизонтальных и вертикальных поверхностей. Первые обладают высокой износоустойчивостью в связи с возможностью большой нагрузки на поверхность. Второй вариант в своем составе содержит больше веществ, способствующих сцеплению со стеной.
  2. Для полов и дорог, с целью их восстановления и защиты. Характеризуются высокой устойчивостью к воздействиям внешней среды. Восстановительные растворы чаще всего используют для несущих стен. Защитные ремонтные составы для железобетонных конструкций предотвращают появление грибка и плесени.
  3. Усадочные и безусадочные. Усадочные стоят дешевле, но имеют один минус: строителям сложно рассчитать высоту смеси, и иногда для достижения нужного результата приходится наносить ее повторно. Второй вид стоит дороже, но обеспечивает более высокую скорость и удобство работ.

Степени разрушения бетона

Прежде чем производить ремонт бетонного изделия или конструкции, необходимо вычислить степень ее разрушения. Существуют 5 различных степеней:

  • Обзор производителейпервая степень предполагает усадочные трещины глубиной не более 5 мм, различные загрязнения и образовавшиеся раковины;
  • вторая — шелушения различного рода и сколы;
  • третий уровень деформации предусматривает трещины глубиной до 40 мм, а также наличие окислительного процесса на поверхности;
  • четвертая степень — более сильные разрушения, при которых виднеется арматура. Глубина повреждения — до 10 см;
  • последний уровень — оголенная арматура, разрушения до 40 см в глубину.

Таким образом, определив степень деформации бетонного изделия, можно правильно подобрать смесь для ремонта бетонных поверхностей.

Обзор производителей

На строительном рынке существует множество производителей ремонтных смесей. Они отличаются качеством, характеристиками и ценой. Вот некоторые из них:

  1. Смесь для ремонта бетонных поверхностей«Церезит» является самой распространенной маркой на рынке и обладает отличными свойствами при восстановлении оснований из бетона. Нанесенная смесь образует прочную пробку, которая противостоит дальнейшей усадке, а также влаге и морозам. Превосходное качество этой продукции соответствует более высокой, по сравнению с другими, цене. За мешок в 25 кг придется заплатить в среднем 41 доллар.
  2. Российская компания «Биррс» отлично зарекомендовала себя на строительном рынке. Она производит смеси для всех пяти степеней разрушения конструкций из бетона. Их продукция ценится из-за высокой морозоустойчивости, водонепроницаемости и сопротивления солям. Составы обладают высокой износостойкостью, гибкостью и эластичностью. Цена за мешок весом в 50 кг составляет примерно 6 долларов.
  3. Фирма «Барс» производит ремонтный состав для бетона, который можно использовать как для горизонтальных, так и для вертикальных поверхностей.

Ремонтные смеси

Качество и цены товаров разных компаний могут отличаться, и потому любой может подобрать для себя оптимальный вариант продукции.

tvoidvor.com

Система эттрингит–таумасит: отличительные черты разрушения бетона

В данной статье исследованы особенности коррозионного разрушения бетона при кристаллизации в нем эттрингита и таумасита. Выявлены отличия в характере разрушения бетонов, позволяющие в ранние сроки определить, какой из компонентов системы эттрингит–таумасит оказывает доминирующее влияние на кинетику процессов деструкции. Приводится оценка условий, являющихся наиболее опасными для развития процессов сульфатной коррозии с участием таумасита.

Считается, что основной характеристикой бетона, определяющей его качество, является предел прочности при сжатии, но этот показатель не остается постоянным в течение длительного срока эксплуатации конструкций. На прочность бетонных изделий оказывает влияние воздействие окружающей среды. Что происходит с бетоном в случае негативного воздействия внешней среды? Насколько интенсивным будет разрушение бетона? Можно ли распознать начальные признаки коррозионного разрушения материала, чтобы принять меры для защиты конструкции? Изучение этих и многих других вопросов позволяет разрабатывать методы защиты бетона от коррозии, а также оценить необходимость их применения в тех или иных условиях эксплуатации, дать технико-экономическую оценку их эффективности, определить кинетику процесса с тем, чтобы обеспечить своевременную реконструкцию.

Сульфатная коррозия бетона – это комплекс сложных физико-химических процессов, приводящих к разрушению бетона. Согласно классификации В. М. Москвина [см. Москвин В. М., Иванов Ф. М., Алексеев С. Н., Гузеев Е. А. Коррозия бетона и железобетона, методы их защиты. М.: Стройиздат, 1980], сульфатная коррозия относится к 3 виду коррозии, т.е. разрушение материала происходит за счет напряжений, возникающих в бетоне из-за кристаллизации экспансивных фаз. Такой вид коррозии возможен при наличии в воздействующей среде сульфат ионов, но, кроме того, как показали результаты исследований, проведенных Л. Кларком, третий вид коррозии развивается и при воздействии пресных вод на бетоны с внутренними источниками сульфатов. Профессор Кларк установил, что таким источником может стать заполнитель [см. Clark L. Thaumasite form of sulfate attack // Concrete International. Vol. 22, № 2, February 1999. p. 37–40].

Продукты взаимодействия агрессивной среды и цементного камня обладают экспансивным характером, и к ним, в первую очередь, относятся эттрингит и таумасит. Когда эттрингит образуется в свежеприготовленной бетонной смеси, а его распределение является относительно гомогенным, он не является причиной разрушения бетона. Такой тип эттрингита, согласно международной классификации [см. Collepardi M. Damage by Delayed Ettringite Formation – A Holistic Approach and New Hypothesis // Concrete International. Vol. 21, № 1, January 1999. p. 69–74; Штарк Й., Больманн К., Зайфарт К. Является ли эттрингит причиной разрушения бетона? // Цемент и его применение. 1998, № 2. стр. 13–22], называется первичным (Early Ettringite Formation – EEF). Примером образования первичного эттрингита является реакция двуводного гипса с трехкальциевым алюминатом в присутствии воды (схема 1):

3CaO•Al2O3+3(CaSO4•3h3O)+26h3O = 3CaO•Al2O3•3CaSO4•32h3O

В процессе этой реакции эттрингит адсорбируется на поверхности цементных зерен, препятствуя проникновению к ним воды и адгезии цементного геля и выступая, таким образом, в качестве регулятора сроков схватывания.

С другой стороны, когда эттрингит образуется в гораздо более поздние сроки (в течение нескольких месяцев или даже лет), возникает неоднородная экспансия в жесткой бетонной структуре, что приводит к появлению микротрещин и развитию процессов коррозии. Согласно международной классификации [см. Clark L. Thaumasite form of sulfate attack // Concrete International. Vol. 22, № 2, February 1999. p. 37–40; Collepardi M. Damage by Delayed Ettringite Formation – A Holistic Approach and New Hypothesis // Concrete International. Vol. 21, № 1, January 1999. p. 69–74], такой эттрингит называется вторичным (Delayed Ettringite Formation – DEF). Разрушающий эффект, который создается в результате образования вторичного эттрингита, зависит от концентрации реагирующих компонентов на участках структуры бетона и кристаллической формы новообразований. Сульфатная коррозия в результате взаимодействия гидроалюминатов кальция и моносульфата с образованием эттрингита показана на схеме 2.

Сульфатная коррозия, происходящая в результате взаимодействия гидросиликатов кальция и гидроксида кальция в присутствии карбонат иона с образованием таумасита, (Thaumasite Sulfate Attack – TSA) описывается схемой 3.

Результаты многочисленных исследований показали, что эттрингит и таумасит всегда находятся в кристаллической смеси. Однако процентные соотношения зависят от внешних условий, воздействующих на систему. В исследованиях [см. Базанов С. М. Механизм разрушения бетона при воздействии сульфатов // Строительные материалы. 2004, № 9. стр. 46–48] установлено, что пониженная температура окружающей среды (+4±2 °С) стимулирует образование таумасита, более высокая температура (от +20±2 °С) приводит к образованию эттрингита. Хотя эттрингит и таумасит имеют сходные кристаллические структуры, характер разрушения бетона при преимущественном содержании одного из компонентов кристаллической смеси в значительной степени различается.

Для того чтобы установить различия в характере разрушений при образовании эттрингита и таумасита, были изготовлены две серии образцов кубиков: с высотой ребра 100 мм для исследования изменения предела прочности при сжатии и с высотой ребра 25 мм для микроскопических исследований – а также партия балочек размером 40х40х160 мм для исследования изменения линейных размеров и прочности. Одна партия образцов помещалась в условия, стимулирующие образование эттрингита, другая – таумасита. Балочки и кубики с высотой ребра 25 мм изготавливались из мелкозернистого бетона, большие кубики – из тяжелого бетона. Составы бетонов приведены в таблице. После твердения в нормальных условиях в течение 28 суток образцы помещались в 5% раствор Na2SO4. Испытания проводились в течение 3-х лет.

Табл. 1 Составы бетонов для проведения исследований

Составляющие бетонной смеси Расход компанентов, кг/м3
Мелкозернистый бетон с прочностью 20 МПа
Цемент М500 145
Песок 2253
Вода 103
Мелкозернистый бетон с прочностью 30 МПа
Цемент М500 178
Песок 2225
Вода 103
Тяжелый бетон с прочностью 20 МПа
Цемент М500 221
Щебень 10 мм 1430
Песок 441
Вода 190
Тяжелый бетон с прочностью 30 МПа
Цемент М500 225
Щебень 20 мм 1430
Песок 544
Вода 150

Наблюдения показали, что образцы, разрушение которых вызвано образованием эттрингита, в течение первого месяца испытаний меняли свой цвет (на поверхности образовывались темные полосы), линейные размеры образцов менялись незначительно, трещинообразования заметить не удалось. В последующие сроки наблюдался прирост линейных деформаций (рис. 1), появились незначительные разрушения ребер и граней образцов. Через 5–6 месяцев испытаний на поверхностях бетона удалось заметить отчетливо различимые – толщиной 0,1...0,2 мм и длиной до нескольких сантиметров – трещины.

В дальнейшем толщина и длина трещин возрастала. Толщина трещин в центральной области граней, как правило, была выше, чем у ребер (рис. 3). Отдельные трещины имели очень большую длину и пересекали несколько граней образца. Через 2–2,5 года исследований образцы с такими трещинами распались на куски. Из нескольких крупных кусков нами были изготовлены образцы. Испытания показали, что прочность этих кусков в среднем составляет не более 25% начальной прочности бетона (рис. 2). При образовании эттрингита напряжения кристаллизации, концентрируясь у микродефектов структуры бетона, вызывают возникновение микротрещин. Затем кристаллизация продолжается в самой трещине, что, соответственно, вызывает ее рост и приводит к разрушению материала.

Образцы, чье разрушение было обусловлено образованием таумасита, также изменили свой цвет, но изменения произошли позднее, чем в случае, описанном выше. Через 2–3 месяца на поверхностях появились темные полосы, на которых впоследствии образовался белый налет. Через 8–9 месяцев образцы покрылись сетью мелких трещин (рис. 4), толщина которых находилась в диапазоне значений от 0,05 до 0,1 мм. В дальнейшем толщина этих трещин увеличивалась, хотя гораздо менее значительно, чем это происходило при кристаллизации эттрингита. Кроме того, происходило образование большого числа новых трещин. Через 14–15 месяцев испытаний было замечено еще одно отличие в разрушении образцов, связанное с наличием эттрингита и таумасита.

Хотя прочность образцов, содержащих таумасит, была несколько выше, чем образцов с эттрингитом, но у первых были отмечены сильные разрушения ребер и граней (рис. 5). По прошествии 3-х лет часть образцов превратилась в бесформенную массу, которая больше напоминала бетонную смесь, чем твердый каменный материал. Результаты рентгенофазового анализа проб показали присутствие большого количества таумасита в этих образцах.

При образовании таумасита в начальные сроки бетон теряет прочность менее интенсивно, чем это происходит при кристаллизации эттрингита. На поверхности материала не возникает глубоких и широких трещин. Бетон не «взрывается» изнутри, как при образовании эттрингита. Деструкция начинается на поверхности с разрушения ребер и граней. Это можно объяснить тем, что таумасит представляет собой силикат содержащую фазу, наличие силикатов в бетоне количественно не ограничивает образование таумасита. Кристаллизация таумасита, по всей видимости, начинается по всему объему материала. Таумасит образуется в мелкокристаллической форме, как показали исследования [см. Штарк Й., Больманн К., Зайфарт К. Является ли эттрингит причиной разрушения бетона? // Цемент и его применение. 1998, № 2. стр. 13–22], и поэтому не создает столь значительных напряжений подобно эттрингиту, но, кристаллизуясь в больших количествах, в течение длительного времени приводит к снижению прочности цементного камня, вызывая разрушение бетона. Механизм деструкции материала при образовании таумасита включает не только процессы коррозии бетона третьего вида, но и процессы коррозии второго вида, связанные с превращением гидросиликатов кальция, обеспечивающих прочность цементного камня, в мало связанную массу – таумасит.

Однако в реальных условиях эксплуатации бетонных изделий происходит изменение параметров воздействия на материал и, следовательно, концентраций, составляющих системы эттрингит–таумасит. Исследование образцов бетона с добавлением 20% CaSO4•2h3O от массы цемента на открытом воздухе, проводимое параллельно с лабораторными исследованиями показали, что в течение первого года разрушения были вызваны образованием эттрингита, таумасит присутствовал в незначительном количестве. Через 22 месяца наблюдений отмечалось появление сети мелких трещин, искривление ребер образцов и разрушение углов. Еще через 4 месяца замечено сильное снижение прочности бетона. Результаты рентгенофазового анализа этих образцов показали значительное увеличение содержания таумасита в кристаллической смеси.

На схеме 3 показано, что в образование таумасита, помимо сульфат ионов, участвуют и карбонат ионы. Источником последних может стать карбонат, содержащий заполнитель, кроме того, карбонаты содержатся в грунтовых водах, а также возможно образование карбоната кальция на поверхностях бетонных элементов, подвергающихся переменному увлажнению и высушиванию в результате взаимодействия гидроксида кальция с СО2 воздуха. Эксперименты с образцами бетона, изготовленными с добавлением 5% молотого СаСО3, показали усиление темпов коррозионного разрушения материала (рис. 6) в начальные сроки в особенности при пониженной температуре окружающей среды. Следовательно, конструкции, эксплуатирующиеся в условиях переменного уровня воды или воздействия грунтовых вод, в первую очередь подвергаются риску образования таумасита.

Таким образом, отличия в характере разрушения бетонов под действием эттрингита или таумасита позволяют в ранние сроки определить, какой из компонентов системы оказывает доминирующее влияние на кинетику процессов деструкции. Однако, как показали исследования, в естественных условиях содержание компонентов кристаллической смеси может изменяться в течение строка эксплуатации. Сначала разрушение вызвано кристаллизацией эттрингита.

На этом этапе происходят рост внутренних напряжений, линейные деформации, могут образовываться трещины. Кристаллизация эттрингита стимулирует рост числа кристаллов таумасита. Он, образуясь по всему объему, приводит к возникновению сети мелких трещин, затем происходит разрушение углов и ребер, что сопровождается потерей прочности и продолжающимся ростом линейных деформаций. Наиболее опасным для развития процессов коррозии, вызванной образованием системы эттрингит–таумасит, является присутствие в воздействующей агрессивной среде наряду с сульфат еще и карбонат ионов или повышенное содержание карбонатов в материале, вследствие карбонизации выщелачивающегося гидроксида кальция, а также наличия карбонат содержащего заполнителя.

library.stroit.ru

Смесь для разрушения бетона. Разрушение бетона: способы и инструкции

Является основой современного строительства. Но часто случается так, что бетонные конструкции необходимо разрушить и демонтировать. К сожалению, не всегда получается сделать так, чтобы конструкция была готова к вторичному использованию. В основном, получается разрушить бетон полностью, а затем использовать, разве что, как засыпку для дорожных ям. Люди часто сталкиваются с подобными проблемами, не зная, чем разрушить бетон. В бытовых условиях это сделать достаточно сложно, однако даже без применения специальной техники можно справиться с такой задачей. Мы поделимся с вами знаниями, которые позволят легко устранить любую конструкцию из этого непростого материала.

Разрушение бетона вручную

Самый сложный способ, но с его помощью можно работать там, где нельзя использовать электроинструмент или специальную пневматическую и гидравлическую технику. В любом случае Вы сможете почувствовать себя в качестве рабочего каменоломен из древних времён. Инструменты с тех пор не изменились, поэтому - чем разрушить бетон – можете догадаться и самостоятельно. А набор очень даже нехитрый. Лом, кувалда, по возможности углошлифовальная машина, а то и ножовка по металлу.

Чаще всего, таким образом убирается коробка ванны и туалета в квартире для перепланирования. Сначала убедитесь в том, что в бетоне не проходят никакие коммуникации. Иначе разрушение может иметь неожиданные и неприятные последствия. Необходимо обесточить трубы, а также обесточить электрические провода. После демонтажа бетона все они придут в негодность. Обычно демонтаж необходимо производить быстро, поэтому нет времени на сохранение этих элементов.

Ритмичными движениями кувалды необходимо разбивать площадь бетона на части. Кувалда нужна очень тяжелая, с массой головы не менее 3 кг. Тогда успех придёт быстро. Работайте как бы по квадратам, отделяя куски бетона так, чтобы откалывались подъёмные для 1-2 человек фрагменты. Когда оголится арматура, её необходимо подрезать. Следите за собственной безопасностью, потому что падающие куски бетона очень тяжелые. Желательно работать в каске. И подключайте логику, угадываю, какой фрагмент упадёт следующим. Лом пригодится для того, чтобы отгибать висящие на арматуре куски. Всё это придётся выносить вручную, поэтому дадим ещё один совет – разбивайте не на мелкие куски, а на фрагменты, которые можно поднять вдвоём. В высотных домах это очень полезно. Куски доносятся до лифта и спускаются. Это отбирает намного меньше времени, чем вынос бетона, разбитого в крошку, в мешках, а также ещё добавляется вынос арматуры. Перед выносом арматуру необходимо загнуть так, чтобы она не представляла опасности для рук. Вся работа должна проводиться в перчатках. Когда будете разрушать коробку, самое сложное – это потолок, и здесь необходимо проявлять крайнюю осторожность.

Как сломать бетон на стенах и потолке коробки мы разобрались, а что делать со ? Здесь всё намного проще. Сначала пробивается отверстие до плиты, затем лом плоской частью загоняется под стяжку, а потом она ломается при помощи рычага. В качестве упора для рычага хорошо использовать голову кувалды. Если грамотно выбрать точку опоры, то тогда бетонная стяжка без арматуры буквально «взрывается» с первой попытки её приподнять. Если стяжка прочно сцеплена с бетоном, то тогда её можно порезать углошлифовальной машиной со специальным кругом по бетоны, а затем уже продольными ударами лома откалывать по кусочку, пока не доберетесь до основной плиты. Работа трудоёмкая, но иногда это единственный выход.

Разрушение бетона с помощью ручной техники.

Всё, чем Вы можете действовать вручную – это перфоратор, или же пневматический отбойный молоток. И тот и другой инструмент имеют огромную силу, поэтому необходимо быть предельно осторожными при их применении. Чем разрушить бетон в определенной точке? Конечно же ударным инструментом. Отбойным молотком лучше не пользоваться в жилых помещениях, потому что от его вибраций могут падать картины, люстры, могут появляться трещины в штукатурке других квартир. Перфоратор хорош тем, что он даёт направленный удар. Точно так же, как молоток и зубило. Перед тем, как раскалывать бетон перфоратором, можно сделать сверленые отверстия, которые зададут направление раскола.

При работе отбойным молотком вне жилых помещений также стоит изначально делать направляющие деформации. В общем же виде нужно стараться делать так, чтобы не пробить кабель или трубу. Бетон при помощи отбойного молотка очень удобно разрушать тогда, когда он поддевается как бы снизу, а ударная часть бьёт в него под углом. Если у Вас нет такого навыка, то проконсультируйтесь с дорожными рабочими – они знают, как правильно работать с таким инструментом.

Разрушение бетона с помощью тяжелой техники.

Пригождается такой вид работ достаточно редко, но необходимо знать о том, что он существует, и если понадобится

  • для Вас уже не будет это невыполнимой задачей. Рассмотрим пример:

Въезд в арку, двор ограничен старыми домами. Во дворе организована стоянка, которая стоит на заливном перекрытии из бетона. Силовая конструкция – крупные двутавровые балки. И тут одна из балок лопается и требует замены. Толщина бетона 1 метр. Чем разрушить такой бетон, чтобы поменять балку?

Для того, чтобы выполнить такую работу, необходим трактор с приводом на гидромолот. Также это устройство монтируется и на экскаваторы вместо ковша. Это отбойный молоток огромных размеров, который вместо пневматики использует гидравлическую жидкость. У этого молота огромное усилие – с 1 удара он легко разрушает 1 метр любого бетона. Когда работает такая техника, нужно позаботиться, чтобы в радиусе 10-15 метров были убраны все свободно лежащие хрупкие предметы, потому что они могут падать со столов и полок. Также от ударов возможно разрушение ёмкостей с водой. И это необходимо учитывать. И нельзя, чтобы люди стояли рядом с ударом, потому что волна может очень сильно ударить по ступням, вызывая даже трещины в костях.

Как уменьшить слой бетона на определенную толщину?

Бывает такое, что залили слишком толстую стяжку, а из-за этого может после ремонта не поместиться предмет мебели или какая-либо конструкция, например, колонна. Подрезать колонну нельзя, проще подрезать бетон, но как это сделать, когда материал очень твердый? Для того, чтобы разрушить только какой-то определенный слой бетона, например, 2 сантиметра, необходимо воспользоваться специальной насадкой для углошлифовальной машины, которая ограничивает размер диска. Достать такую насадку непросто, но в строительных супермаркетах они периодически появляются. Насадка одевается на диск, после чего выставляется глубина прорезей. Бетон перед порезкой необходимо напитать водой, чтобы не было пыли, но при этом не стоит забывать и о мерах электрической безопасности. Затем, когда поверхность станет похожа на плитку шоколада, необходимо перфоратором отколоть все кусочки по одному. Поверхность можно выровнять той де углошлифовальной машиной, только с так называемой алмазной чашкой.

Как вырубить в бетоне отверстии определенной формы и размеров?

Для того, чтобы разрушить бетон по определенному контуру, существует несколько способов осуществления такой операции, в зависимости от того, какой бетон необходимо разрезать. Если бетон тонкий, то достаточно вырезать отверстие углошлифовальной машиной по приближенному контуру, а потом уже можно дорабатывать отверстие. Например, нужно круглое окно. Чертится шестиугольник, вырезается диском, а затем дорабатывается до круга рашпилем вручную. Если же бетон слишком толстый, то тогда необходимо делать отверстия буром перфоратора, а затем разрушат

mastplan.ru

Кислая смесь для разрушения бетона. Уменьшение бетонного слоя. Когда применяются химические составы

Эта "бяка" содержится в Коле, является пищевой добавкой. Кстати, соляная кислота содержится в желудочном соке, так что если долго и упорно срыгивать - фундамент будет разрушен.

Не знаю, как долго придется срыгивать и поливать колой, человек спросил, я ответил.

Вот еще информация к размышлению:

ХИМИЧЕСКАЯ КОРРОЗИЯ БЕТОНА

При эксплуатации инженерных сооружений в жидких и газовых средах бетон может подвергаться химической коррозии. Коррозия в газообразной среде протекает обычно при наличии влаги и так же, как в воде.

В соответствии с классификацией, предложенной В.М. Москвиным, химическую коррозию цементного бетона разделяют на три вида. В чистом виде она встречается редко. Чаще совмещаются два вида коррозии.

Коррозия первого вида происходит в результате растворения составляющих цементного камня водами с малой временной жесткостью. Эта вода горных рек, дождевая, болотная, конденсат. Уменьшает агрессивность воды содержание в ней Са (НСО3)2 и Мg(НСО3)2. И только вода с бикарбонатной щелочью менее 1,4-0,7 мг экв/л является агрессивной. Разрушение цементного камня начинается вымыванием Са (ОН)2, растворимость, которой составляет 1,2 г/л в расчете на СаО, а затем идет разрушение клинкерных минералов. Выщелачивание 15-30% СаО цементного камня приводит к уменьшению прочности на 40-50%.

Стойкость бетона можно повысить применением более плотных бетонов, пуццолановых портландцементов и шлакопортландцементов. Добавки в цементах связывают известь в нерастворимые соединения. При выдерживании изделий на воздухе в результате взаимодействия Са (ОН)2 с СО2 на поверхности бетона образуется малорастворимый карбонат кальция СаСО3, который не выщелачивается водой.

Коррозия второго вида происходит в результате взаимодействия составляющих цементного камня с кислотами и некоторыми солями. При обменных реакциях образуются не имеющие прочности легкорастворимые соединения. К этому виду коррозии относят углекислотную, общекислотную, магнезиальную.

Углекислотная коррозия. Углекислый газ СО2, находящийся в воздухе, растворяется в воде, образуя угольную кислоту Н2СО3. При наличии в воде достаточного количества карбоната кальция СаСО, чтобы нейтрализовать угольную кислоту, Н2СО3 и СаСО3 должны находиться в равновесном состоянии: СаСО3 + Н2СО3 Са (НСО3)2. Эта угольная кислота не является агрессивной по отношению к цементному камню. Если количество углекислоты больше, чем равновесное, она становится агрессивной и способна разрушить цементный камень по реакциям:

Са (ОН)2 + Н2СО3 = СаСО3 + 2Н2О;

СаСО3 + Н2СО3 = Са (НСО3)2.

Гидрокарбонат кальция легко растворяется и вымывается водой. Углекислотная коррозия происходит в результате действия растворов неорганических и органических кислот при их рН

Са (ОН)2 + 2НСl = СаСl2 + 2Н2О.

Органические кислоты - азотная, уксусная, молочная, винная, олеиновая, гуминовая, фульвовая и другие - также разрушают цементный камень.

Магнезиальная коррозия. Чисто магнезиальная коррозия происходит при действии магнезиальных солей, кроме МgSО4. Например, в морской воде содержится хлорид магния МgСI2, который взаимодействует с цементным камнем по реакции:

Са (ОН)2 + МgСl2 = СаСl2 + Mg(OH)2.

Образуется растворимый хлорид кальция и бессвязный гидроксид магния. Коррозия становится заметной при содержании в воде МgСI2 более 1,5-2%.

Для защиты от коррозии второго вида следует применять плотные бетоны, делать пропитку бетона эпоксидными, полиэфирными и другими смолами, устраивать защитные покрытия.

Коррозия третьего вида возникает при действии на цементный камень веществ, способных образовывать кристаллические соединения увеличенного объема. Они оказывают давление на стенки пор и разрушают цементный камень. Коррозия происходит при действии вод, содержащих сульфат кальция СаSO4, сульфат натрия Na2SO4 и др. Na2SO4 вначале реагирует с Са (ОН)2 по схеме Са (ОН)2 + Na2SO4 CaSO4 + 2NaOH, а затем CaSO4 с минералом С3А. Сульфат кальция CaSO4 сразу реагирует с минералом С3А:

ЗСаО х Аl2O3 х 6Н2О + CaSO4 + (25-26)Н2О = ЗСаО х Аl2О3 х CaSO4 х(31-32) Н2О.

В результате взаимодействия образуется кристаллический трехсульфатный гидроалюминат (этрингит) с объемом в 2,8 раза большим объема исходных веществ.

Для предотвращения этого вида коррозии применяют глиноземистый цемент, сульфатостойкие портландцемента и бетоны повышенной плотности.

Сульфатно-магнезиальная коррозия возникает при действии на цементный камень сульфата магния MgSO4. Реакция идет по схеме: Са(ОН)2 + MgSO4 + 2Н2О = CaSO4 х2Н2О + Мg(ОН)2. Образуется рыхлая масса Мg(ОН)2 и кристаллы CaSO4 х 2Н2О, которые растворяются в воде. Влияние на цемент сказывается при концентрации MgSO4 более 0,5-0,75%. Происходит совмещение двух видов коррозии - магнезиальной и сульфатной.

Комментариев:

Как приготовить качественный бетон и залить им фундамент, знают многие. Но иногда возникает необходимость провести разрушение бетона. Это может быть вызвано удалением части старого фундамента, сносом старого дома и перепланировкой участка под новый и целым рядом других причин.

Для разрушения бетона можно использовать перфоратор, кувалду или паяльную лампу.

Основные способы разрушения бетона

Существует несколько таких способов, условно их можно разделить на две группы: способы механического и химического разрушения.

К первой группе относятся:

  • использование кувалды или перфоратора;
  • использование воды и паяльной лампы;
  • использование перфоратора и деревянных колышков;
  • использование специального алмазного сверла.

Ко второй группе относятся:

  • использование специальной кислотной смеси;
  • использование специального порошка.

Вернуться к оглавлению

Механические способы разрушения

Если бетонный монолит небольших размеров, его можно разбить кувалдой или перфоратором. Такой способ очень тяжелый физически, к тому же для большого монолита он малоэффективный.

Для разрушения можно использовать комбинацию кувалды и перфоратора. Применяя этот способ, максимально используют слабость бетона к изгибам и разрывам. На расстоянии 15-20 см от края бетонного монолита перфоратором в бетоне высверливается отверстие.

В это отверстие вставляется заостренный стальной штырь – пика от отбойного молотка или кусок толстой (не меньше 30 мм в диаметре) арматуры. По вставленному в отверстие стальному штырю изо всей силы бьют кувалдой. Достаточно нескольких сильных ударов – и бетонный фундамент начинает трескаться. Если бетон не усилен арматурой, то, просверлив несколько таких отверстий по длине бетонного фундамента и поочередно подвергая их ударам кувалды, можно разбить достаточно большой кусок бетонного монолита.

Если есть большой запас времени и терпения, то можно разрушить бетон при помощи паяльной лампы и холодной воды. Сначала участок фундамента сильно разогревают паяльной лампой, а затем поливают холодной водой.

После 3-4 повторов такой участок возьмется сеткой мелких трещин, и достаточно будет сильного удара кувалдой, чтобы он рассыпался. Процесс демонтажа фундамента этим способом может растянуться на недели, а то и месяцы, но зато без особых затрат и усилий позволит разрушить даже армированный фундамент.

Также эффективен способ разрушения бетона с использованием деревянных колышков. Перфоратором точно по линии намеченного скола с шагом в 15-20 см высверливаются отверстия диаметром минимум 30 мм. В них молотком забиваются пробки, сделанные из сухой сердцевины твердых пород дерева. Сами пробки должны быть чуть больше диаметра отверстия.

Вбитые пробки напитывают водой, чтобы разбухли. Для этого у пластиковой бутылки прокалывают дно, затем наливают в нее воду и ставят отверстием на деревянную пробку. Под воздействием просачивающийся через отверстие воды вбитая пробка увеличится до 15% от своего первоначального объема.

Это расширение создает внутри монолита давление, способное разорвать даже гранит. Способ этот медленный – чтобы кусок бетона откололся, нужно от 10 до 15 дней. Зато он сводит к минимуму прилагаемые для разрушения бетона физические усилия.

Если бетонный монолит усилен арматурной сеткой, то перфоратор просверли

amstroyer.ru

БЕТОННАЯ СМЕСЬ ДЛЯ РАЗРУШЕННОЙ СТЕНЫ

Ремонтные смеси для бетона применяется тогда, когда нам необходимо устранить повреждения поверхности без демонтажа и повторной заливки. Конечно, прочность конструкции при этом может несколько снизиться, но все равно итоговое состояние будет куда лучше, чем до ремонта.

Ниже мы расскажем, какие смеси можно использовать для заделки щелей и трещин, как готовить подобные средства самостоятельно, и на что обращать внимание при их использовании.

Даже сильно поврежденную поверхность можно восстановить, используя качественные материалы

Общие вопросы ремонта бетонных конструкцийНаиболее часто встречающиеся повреждения

Бетон – довольно прочный материал, и именно по этой причине он широко применяется в строительстве. Однако и такие поверхности подвержены износу, потому рано или поздно им требуется восстановление.

Фото поврежденной поверхности

Как правило, в быту мы сталкиваемся либо с повреждениями бетонных несущих конструкций (фундаменты, цоколи, стены), либо с дефектами стяжки пола.

К наиболее распространенным проблемам относят:

  • Пыление — мелкодисперсное разрушение поверхностного слоя. Возникает в результате нарушения технологии заливки, а также при значительной интенсивности эксплуатационных нагрузок. Устраняется нанесением пленкообразующих составов — силингов.
  • Трещины – образуются при воздействии сильных нагрузок на небольшой участок, а также при температурных деформациях. Кроме того, бетон может растрескиваться в процессе усадки.

Чтобы избежать появления деформационных и усадочных трещин, необходимо принимать меры еще на этапе подготовки конструкции к заливке бетона.

Для этого используются различные демпферные ленты, компенсационные швы и т.д.

  • Следы механических повреждений — сколы, выбоины, отверстия и т.д. Сюда же относят следы от элементов конструкции — закладных, маяков, деталей опалубки.
  • Перепады уровня, возникшие вследствие неравномерной усадки основания.

И если в последнем случае придется выполнять масштабное восстановление практически всего пола, то при появлении трещин или выбоин смесь для ремонта бетона поможет восстановить поверхность.

Бетонный пол, подготовленный к ремонту

Для выполнения ремонтных работ используются самые разные составы. Их ассортимент весьма обширен, но все же его можно условно разделить на две группы. Особенности материалов проще всего анализировать, изучая приведенную ниже таблицу:

Что касается материала, то для изготовления подобных составов широко применяется безусадочный цемент, а также полимеры – эпоксидная смола и полиуретан. Для всех средств данной категории характерно достаточно быстрое отвердение, потому их используют для экспресс-восстановления – тогда, когда нет времени ждать полноценного набора прочности бетонной конструкции.

Применение наливной смеси

Дополнительным плюсом может служить наличие в составе ремонтной смеси фибры – стальных или полимерных волокон. При застывании средства фибра для бетона укрепляет края поврежденного основания, существенно повышая его прочность. Правда, цена у подобных армирующих средств будет несколько выше.

Если вы не хотите тратиться на покупку фирменного материал, то вполне можете сделать смесь для ремонта бетонных поверхностей своими руками. Конечно, ее эффективность будет несколько ниже, но для бытовых нужд она вполне подойдет.

Средство можно приготовить и самостоятельно

Для приготовления нам понадобятся:

  • Клей ПВА или бустилат, разведенные водой в пропорции 1:3.
  • Цемент – 1 часть.
  • Песок, просеянный через мелкое сито — 3 части.

Готовится материал непосредственно перед началом ремонта.

  • Засыпаем цементно-песчаную смесь в емкость с широкой горловиной.
  • Доливаем в сухой материал клеевую суспензию, постепенно перемешивая раствор вручную. Важно не переборщить с водой – состав должен быть довольно плотным.
  • Когда весь материал окажется в емкости, берем дрель с насадкой-миксером и замешиваем состав до полной однородности. Как правило, для этого достаточно трех-пяти минут.

Методика устранения поврежденийПодготовка основания

Схема расшивки трещины

Обычно к любой смеси для ремонта бетонных поверхностей прилагается инструкция, четко регламентирующая процесс ее использования.

Здесь же мы приведем лишь общие рекомендации, следовать которым нужно в любом случае:

  • Для начала, нам необходимо осмотреть поврежденный участок и приблизительно оценить объем материала, который нам понадобится.
  • Затем из трещины удаляем осколки бетона, пыль, попавший туда мусор и т.д. Для небольших дефектов можно использовать жесткую щетку, а значительные повреждения удобнее очищать пескоструйным или водоструйным аппаратом под высоким давлением.
  • Чтобы закрепить края, трещину можно углубить на 20-50 мм ниже линии естественного разрушения. В процессе расшивки трещин часто используется резка железобетона алмазными кругами, позволяющая получить идеально ровные края и устранить все слабо держащиеся участки.

В некоторых случаях для удаления поврежденных частей используется алмазное бурение отверстий в бетоне

На продольных трещинах специалисты рекомендуют прорезать поперечные канавки с шагом около 20 см для более эффективного закрепления.

  • Особое внимание нужно уделить арматурному каркасу. Все металлические детали, выступающие за пределы бетонного покрытия, зачищаем до блеска. Затем на зачищенные прутки наносим антикоррозионную грунтовку, чтобы предотвратить окисление материала в процессе гидратации ремонтной смеси.
  • Если глубина дефекта превышает 50 мм, то в него необходимо закладывать дополнительное армирование. Арматура монтируется таким образом, чтобы металл впоследствии был покрыт слоем раствора не тоньше 20 мм.

После выполнения всех этих работ повторно обеспыливаем участок. Затем увлажняем все поверхности, стараясь, впрочем, не допустить скопления крупных капель.

Подготовка и нанесение состава

Смесь для ремонта бетонных поверхностей, подготовленная самостоятельно, может наноситься сразу же. А вот составы промышленного производства нужно правильно развести водой.

Только в этом случае материал приобретет необходимые для эффективного заполнения шва и полимеризации характеристики:

  • Как правило, и текучие, и тиксотропные смеси требуют сравнительно небольшого объема жидкости. В среднем на 1 кг сухого материала расходуется от 120 до 250 мл воды.
  • Прохладную воду в минимальном объеме (точные цифры указываются в инструкции) заливаем в емкость или бетономешалку. Затем засыпаем сухой компонент, постепенно перемешивая материал.

Ручная обработка не обеспечивает нужной однородности средства, потому нужно обязательно использовать электрический миксер.

Для небольших объемов допускается применения дрели со специальной насадкой.

Далее наши действия зависят от того, какой материал применяется для ремонта.

Литьевые средства наносим таким образом:

  • По периметру восстанавливаемого участка монтируем опалубку. Желательно, чтобы ее высота была минимум на 50 мм больше, чем планируемый уровень покрытия.
  • Подготовленную текучую смесь выливаем на бетон, равномерно распределяя с одного края к другому. Такая последовательность действий позволит избежать захвата пузырьков воздуха.
  • Вибрационное уплотнение состава в большинстве случаев не требуется. Для удаления воздушных карманов на месте стыка поверхности и опалубки достаточно провести по периметру металлической полосой.

С тиксотропными средствами действуем иначе:

  • Набираем небольшое количество материала на шпатель или терку.

Заполнение дефекта тиксотропным безусадочным раствором

  • С усилием вдавливаем состав в трещину, заполняя ее за один проход на 15-25 мм.
  • Выждав некоторое время для полимеризации слоя, повторяем обработку до тех пор, пока дефект не будет устранен.
  • Поверхность заглаживаем увлажненным стальным полутерком, стараясь замаскировать все выступы и неровности. Повторное выравнивание с применением того же инструмента проводим после того, как смесь схватится, т.е. минимум через полчаса после нанесения.

Чтобы ремонтный состав не растрескивался, его необходимо поддерживать во влажном состоянии в течение суток, а в жару — до трех дней и более. Для этого периодически опрыскиваем восстановленный участок водой из пульверизатора или шланга, после чего укрываем его полиэтиленом или мешковиной.

Желательно, чтобы на протяжении всего периода сушки в помещении не было сквозняков и резких перепадов температуры.

При оптимальном использовании смеси для ремонта бетона помогут восстановить поверхность практически любой конструкции. Соблюдение правил приготовления раствора и его нанесения дает возможность сохранить механические свойства поверхности, а в некоторых случаях и серьезно их улучшить. Видео в этой статье поможет разобраться в нюансах технологии тем, кто планирует заняться подобным ремонтом самостоятельно.

Материалы: http://rusbetonplus.ru/tonkosti-betonirovaniya/remontnaia-smes-dlia-betona-vosstanavlivaem-celostnost-konstrykcii/

my-repairs.ru