Таблица теплопроводности строительных материалов: коэффициенты. Теплопроводность бетона таблица


Таблица теплопроводности строительных материалов: коэффициенты

ПОДЕЛИТЕСЬВ СОЦСЕТЯХ

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Основная таблица теплопроводности строительных материалов

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример - при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.
Теплопотери неутепленного частного дома

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Таблица теплопроводности строительных материалов: коэффициенты

Теплопроводность строительных материалов (видео)

ОЦЕНИТЕМАТЕРИАЛ Загрузка... ПОДЕЛИТЕСЬВ СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

remoo.ru

Таблица теплопроводности строительных материалов

Таблица теплопроводности конструкционных материалов

Таблица теплопроводности строительных материалов необходима при проектировании защиты здания от теплопотерь согласно нормативам СНиП от 2003 года под номером 23-02. Этими мероприятиями обеспечивается снижение эксплуатационного бюджета, поддержание круглогодичного комфортного микроклимата внутри помещений. Для удобства пользователей все данные сведены в таблицы, даны параметры для нормальной эксплуатации, условий повышенной влажности, так как, некоторые материалы при увеличении этого параметра резко снижают свойства.

Таблица теплопроводности строительных материалов

Теплопотери сквозь конструкционные материалы

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Сравнительная таблица теплопроводности строительных материалов

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

Сравнительная толщина слоя разных стройматериалов для достижения необходимого теплосопротивления стен

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Многослойная кирпичная стена здания

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Фрагмент таблицы теплопроводности строительных материалов

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Тепловой расчет коттеджа в составе проектной документации

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Пример рекламы производителя теплых блоков

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Тепловые потери через отдельные конструкции здания

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

  • облицовка в полкирпича 12,5 см
  • внутренняя стена в кирпич 25 см

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Наружное утепление базальтовой ватой

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

Наружное утепление экструдированным пенополистиролом

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Теплопроводность воздушной прослойки в стене

Например, 10 см прослойка замкнутого контура обеспечивает теплоспопротивление 0,18 либо 0,15 единиц при отрицательных, положительных температурах, соответственно. Сантиметровый воздушный зазор добавляет несущей стене 0,15 или 0,13 единиц теплосопротивления (зимой, летом, соответственно).

Что такое «точка росы»

На завершающем этапе вычислений потребуется правильно расположить утеплитель, коробки оконных блоков в толще стен. Это необходимо для смещения точки росы наружу, в противном случае избавиться от влаги на стеклах, внутренних стенах с началом отопительного сезона не получится.

Точкой росы называют температурный барьер, при достижении которого из теплого воздуха в эксплуатируемом помещении, имеющим высокую относительную влажность, начинает конденсироваться вода. Для увеличения ресурса силовых конструкций точку росы необходимо вывести за наружную поверхность стены, чтобы кирпич. Древесина, бетон не разрушался под действием влаги.

Точка росы теплового контура здания

Кроме того, смещение точки росы внутрь слоя утеплителя приведет к увеличению расхода энергоносителя для обогрева жилища уже на третий сезон эксплуатации. Тплоизолятор намокнет, снизится его теплосопротивление.

Неправильная установка оконных блоков приводит к аналогичной ситуации – откосы будут стабильно влажными всю зиму. Поэтому, нормативы СНиП рекомендуют смещение внутренней плоскости оконного блока:

  • заподлицо с внутренней стеной в срубах, кирпичных коттеджах с кладкой в 1,5 кирпича
  • отступ от наружной плоскости стены от 12,5 см при значительной толщине кладки

Правильное расположение оконного блока в толще проема стены

Выбор конструкционных, облицовочных, теплоизоляционных материалов должен осуществляться комплексно. Паропропускная способность отдельных слоев стены должна снижаться изнутри наружу. Принцип этого метода становится понятнее на простом примере:

  • если облицевать фасады коттеджа, выложенные из газобетонных блоков, керамическим кирпичом, клинкером без вентиляционного зазора
  • влажный воздух из помещений свободно преодолеет материал стены, будет остановлен облицовкой
  • блоки начнут разрушаться в агрессивной среде, снизится ресурс здания

Промерзание окна зимой

Кроме того, замерзающая нутрии блоков вода будет расширяться, дополнительно разрушая кладку, ослабляя силовой каркас коттеджа. Проблема решается заменой керамики на сайдинг, деревянные облицовки либо созданием вентиляционного зазора, через который влага сможет отводиться воздушными массами.

Присоединяйтесь к обсуждению!

Нам было бы интересно узнать вашу точку зрения, оставьте свое мнение в комментариях 😼

koffkindom.ru

Информационный портал о ремонте Вашего дома

Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов: таблица

Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала

Содержание статьи

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться

Потери тепла на разных участках постройки будут отличаться

Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

От чего зависит величина теплопроводности?

От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

Наглядный пример демонстрирует свойство теплопроводности

Наглядный пример демонстрирует свойство теплопроводности

На данный показатель оказывают влияние следующие параметры:

  • более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
  • пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии  через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
  • при повышенной влажности и промокании стен здания  показатель прохождения тепла будет выше.
Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

Использование значений теплопроводности на практике

Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

Существует огромное количество материалов с теплоизолирующими свойствами

Существует огромное количество материалов с теплоизолирующими свойствами

Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

Часто для утепления строений используются более простые материалы

Часто для утепления строений используются более простые материалы

Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов,  таблица показывает все значения.

В некоторых случаях более эффективным считается утепление снаружи

В некоторых случаях более эффективным считается утепление снаружи

Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

Особенности теплопроводности готового строения

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

Разновидности утепления конструкций

Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

  • при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;
Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

  • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.
Особенности монтажа теплоизолирующего материала с внутренней стороны

Особенности монтажа теплоизолирующего материала с внутренней стороны

Как определить коэффициенты теплопроводности строительных материалов: таблица

Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

Необходимые коэффициенты для самых различных материалов

Необходимые коэффициенты для самых различных материалов

Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

Технические характеристики утеплителей для бетонных полов

Технические характеристики утеплителей для бетонных полов

О значении теплопроводности можно судить по сравнительным характеристикам

О значении теплопроводности можно судить по сравнительным характеристикам

Полезные рекомендации

Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы

Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы

Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции

При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции

Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов

Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов

Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:

  • если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
  • чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
  • для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
  • если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении

Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении

Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.

Выбор утеплителя зависит от материала самой двери

Выбор утеплителя зависит от материала самой двери

Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.

Понравилась статья?Сохраните, чтобы не потерять!

Загрузка...

homemyhome.ru

Теплопроводность бетона и кирпича

Полная таблица теплопроводности различных строительных материалов

В моей работе достаточно часто бывает необходимо уточнить теплопроводность различных материалов. Чтобы каждый раз не искать в справочниках, я решил собрать данные по теплопроводности строительных материалов в таблицу.

Каковую здесь для Вашего удобства и выкладываю. Пользуйтесь!

И не забывайте советовать друзьям.

Таблица теплопроводности материалов

Материал Плотность, кг/м3 Теплопроводность, Вт/(м·град) Теплоемкость, Дж/(кг·град)
ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 840
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 300…1000 0.08…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) 200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996 – 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 200…600 0.065…0.145 1060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.28
Пробка техническая 50 0.037 1800
Ракушечник 1000…1800 0.27…0.63
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

termoizol.com

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 - 150 кг/м30,043-0,06
Пеностекло, крошка, 151 - 200 кг/м30,06-0,063
Пеностекло, крошка, 201 - 250 кг/м30,066-0,073
Пеностекло, крошка, 251 - 400 кг/м30,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 - 220 кг/м30,057-0,063
Пеноблок 221 - 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата 0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотность Коэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор 0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающихконструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

stroychik.ru

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д ...... / / Теплопроводность. Коэффициенты теплопроводности.  / / Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. 

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Материал

Плотность (для сыпучих – насыпная плотность), кг/м3

Коэффициент теплопроводности, Вт/ (м*К)

Алюминий 2600-2700 203,5-221 растет с ростом плотности
Асбест 600 0,151
Асфальтобетон 2100 1,05
АЦП асбесто-цементные плиты 1800 0,35
Бетон см.также Железобетон 2300-2400 1,28-1,51 растет с ростом плотности
Битум 1400 0,27
Бронза 8000 64
Винипласт 1380 0,163
Вода при температурах выше 0 градусов С ~1000 ~0,6
Войлок шерстяной 300 0,047
Гипсокартон 800 0,15
Гранит 2800 3,49
Дерево, дуб - вдоль волокон 700 0,23
Дерево, дуб - поперек волокон 700 0,1
Дерево, сосна или ель - вдоль волокон 500 0,18
Дерево, сосна или ель - поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
Железобетон 2500 1,69
Картон облицовочный 1000 0,18
Керамзит 200 0,1
Керамзит 800 0,18
Керамзитобетон 1800 0,66
Керамзитобетон 500 0,14
Кирпич керамический пустотелый (брутто1000) 1200 0,35
Кирпич керамический пустотелый (брутто1400) 1600 0,41
Кирпич красный глиняный 1800 0,56
Кирпич, силикатный 1800 0,7
Кладка из изоляционного кирпича 600 0,116—0,209 растет с ростом плотности
Кладка из обыкновенного кирпича 600–1700 0,384—0,698—0,814 растет с ростом плотности
Кладка из огнеупорного кирпича 1840 1,05 (при 800—1100°С)
Краска масляная 0,233
Латунь 8500 93
Лед при температурах ниже 0 градусов С 920 2,33
Линолеум 1600 0,33
Литье каменное 3000 0,698
Магнезия 85% в порошке 216 0,07
Медь 8500-8800 384-407 растет с ростом плотности
Минвата 100 0,056
Минвата 50 0,048
Минвата 200 0,07
Мрамор 2800 2,91
Накипь, водяной камень 1,163—3,49 растет с ростом плотности
Опилки древесные 230 0,070—0,093 растет с ростом плотности и влажности
Пакля сухая 150 0,05
Пенобетон 1000 0,29
Пенобетон 300 0,08
Пенопласт 30 0,047
Пенопласт ПВХ 125 0,052
Пенополистирол 100 0,041
Пенополистирол 150 0,05
Пенополистирол 40 0,038
Пенополистирол экструдированый 33 0,031
Пенополиуретан 32 0,023
Пенополиуретан 40 0,029
Пенополиуретан 60 0,035
Пенополиуретан 80 0,041
Пеностекло 400 0,11
Пеностекло 200 0,07
Песок сухой 1600 0,35
Песок влажный 1900 0,814
Полимочевина 1100 0,21
Полиуретановая мастика 1400 0,25
Полиэтилен 1500 0,3
Пробковая мелочь 160 0,047
Ржавчина (окалина) 1,16
Рубероид, пергамин 600 0,17
Свинец 11400 34,9
Совелит 450 0,098
Сталь 7850 58
Сталь нержавеющая 7900 17,5
Стекло оконное 2500 0,698—0,814
Стеклянная вата (стекловата) 200 0,035—0,070 растет с ростом плотности
Текстолит 1380 0,244
Торфоплиты 220 0,064
Фанера клееная 600 0,12
Фаолит 1730 0,419
Чугун 7500 46,5—93,0
Шлаковая вата 250 0,076
Эмаль 2350

0,872—1,163

tehtab.ru

Коэффициент теплопроводности строительных материалов таблица

Любой строитель с уверенностью скажет вам, что прежде, чем приступить к непосредственному выполнению работ, необходимо тщательно разработать проект. Очевидно, что задания такого типа ложатся на плечи квалифицированных в этой области специалистов – проектировщиков. Чтобы деятельность проектировщика была успешной, будь то дипломированный мастер или только новичок, ему необходимо обладать большим количество информации о комплексе свойств материалов, задействованных в конкретном проекте. Специалисту не только придется создавать будущее сооружение с нуля, но и в процессе доработки корректировать его внешний вид. Кроме того, важным является и расчет теплотехнических параметров здания.

Успешная работа проектировщика не только гарантирует качественный результат в краткосрочной перспективе, но напрямую определяет состояние здание в далеком будущее.

Материал Коэффициент теплопроводности, Вт/(м·°C)
В сухом состоянии Условия А («обычные») Условия Б («влажные»)
Пенополистирол (ППС) 0,036 — 0,041 0,038 — 0,044 0,044 — 0,050
Пенополистирол экструдированный (ЭППС, XPS) 0,029 0,030 0,031
Войлок шерстяной 0,045
Цементно-песчаный раствор (ЦПР) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка обычная 0,25
Минеральная вата каменная, 180 кг/м3 0,038 0,045 0,048
Минеральная вата каменная, 140-175 кг/м3 0,037 0,043 0,046
Минеральная вата каменная, 80-125 кг/м3 0,036 0,042 0,045
Минеральная вата каменная, 40-60 кг/м3 0,035 0,041 0,044
Минеральная вата каменная, 25-50 кг/м3 0,036 0,042 0,045
Минеральная вата стеклянная, 85 кг/м3 0,044 0,046 0,05
Минеральная вата стеклянная, 75 кг/м3 0,04 0,042 0,047
Минеральная вата стеклянная, 60 кг/м3 0,038 0,04 0,045
Минеральная вата стеклянная, 45 кг/м3 0,039 0,041 0,045
Минеральная вата стеклянная, 35 кг/м3 0,039 0,041 0,046
Минеральная вата стеклянная, 30 кг/м3 0,04 0,042 0,046
Минеральная вата стеклянная, 20 кг/м3 0,04 0,043 0,048
Минеральная вата стеклянная, 17 кг/м3 0,044 0,047 0,053
Минеральная вата стеклянная, 15 кг/м3 0,046 0,049 0,055
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 0,29 0,38 0,43
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 0,21 0,33 0,37
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 0,14 0,22 0,26
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 0,11 0,14 0,15
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 0,31 0,48 0,55
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 0,23 0,39 0,45
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 0,15 0,28 0,34
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 0,13 0,22 0,28
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб поперек волокон 0,10 0,18 0,23
Дуб вдоль волокон 0,23 0,35 0,41
Медь 382 — 390
Алюминий 202 — 236
Латунь 97 — 111
Железо 92
Олово 67
Сталь 47
Стекло оконное 0,76
Свежий снег 0,10 — 0,15
Вода жидкая 0,56
Воздух (+27 °C, 1 атм) 0,026
Вакуум 0
Аргон 0,0177
Ксенон 0,0057
Арболит (подробнее здесь) 0,07 — 0,17
Пробковое дерево 0,035
Железобетон плотностью 2500 кг/м3 1,69 1,92 2,04
Бетон (на гравии или щебне) плотностью 2400 кг/м3 1,51 1,74 1,86
Керамзитобетон плотностью 1800 кг/м3 0,66 0,80 0,92
Керамзитобетон плотностью 1600 кг/м3 0,58 0,67 0,79
Керамзитобетон плотностью 1400 кг/м3 0,47 0,56 0,65
Керамзитобетон плотностью 1200 кг/м3 0,36 0,44 0,52
Керамзитобетон плотностью 1000 кг/м3 0,27 0,33 0,41
Керамзитобетон плотностью 800 кг/м3 0,21 0,24 0,31
Керамзитобетон плотностью 600 кг/м3 0,16 0,2 0,26
Керамзитобетон плотностью 500 кг/м3 0,14 0,17 0,23
Крупноформатный керамический блок (тёплая керамика) 0,14 — 0,18
Кирпич керамический полнотелый, кладка на ЦПР 0,56 0,7 0,81
Кирпич силикатный, кладка на ЦПР 0,70 0,76 0,87
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР 0,47 0,58 0,64
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР 0,41 0,52 0,58
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР 0,35 0,47 0,52
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР 0,64 0,7 0,81
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР 0,52 0,64 0,76
Гранит 3,49 3,49 3,49
Мрамор 2,91 2,91 2,91
Известняк, 2000 кг/м3 0,93 1,16 1,28
Известняк, 1800 кг/м3 0,7 0,93 1,05
Известняк, 1600 кг/м3 0,58 0,73 0,81
Известняк, 1400 кг/м3 0,49 0,56 0,58
Туф, 2000 кг/м3 0,76 0,93 1,05
Туф, 1800 кг/м3 0,56 0,7 0,81
Туф, 1600 кг/м3 0,41 0,52 0,64
Туф, 1400 кг/м3 0,33 0,43 0,52
Туф, 1200 кг/м3 0,27 0,35 0,41
Туф, 1000 кг/м3 0,21 0,24 0,29
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 0,35
Фанера клееная 0,12 0,15 0,18
ДСП, ДВП, 1000 кг/м3 0,15 0,23 0,29
ДСП, ДВП, 800 кг/м3 0,13 0,19 0,23
ДСП, ДВП, 600 кг/м3 0,11 0,13 0,16
ДСП, ДВП, 400 кг/м3 0,08 0,11 0,13
ДСП, ДВП, 200 кг/м3 0,06 0,07 0,08
Пакля 0,05 0,06 0,07
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 0,15 0,34 0,36
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 0,15 0,19 0,21
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 0,38 0,38 0,38
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 0,33 0,33 0,33
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 0,35 0,35 0,35
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 0,29 0,29 0,29
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 0,2 0,23 0,23
Эковата 0,037 — 0,042
Перлит вспученный, песок, плотность 75 кг/м3 0,043 — 0,047
Перлит вспученный, песок, плотность 100 кг/м3 0,052
Перлит вспученный, песок, плотность 150 кг/м3 0,052 — 0,058
Перлит вспученный, песок, плотность 200 кг/м3 0,07
Пеностекло, насыпное, плотность 100 — 150 кг/м3 0,043 — 0,06
Пеностекло, насыпное, плотность 151 — 200 кг/м3 0,06 — 0,063
Пеностекло, насыпное, плотность 201 — 250 кг/м3 0,066 — 0,073
Пеностекло, насыпное, плотность 251 — 400 кг/м3 0,085 — 0,1
Пеностекло, блоки, плотность 100 — 120 кг/м3 0,043 — 0,045
Пеностекло, блоки, плотность 121 — 170 кг/м3 0,05 — 0,062
Пеностекло, блоки, плотность 171 — 220 кг/м3 0,057 — 0,063
Пеностекло, блоки, плотность 221 — 270 кг/м3 0,073
Керамзит, гравий, плотность 250 кг/м3 0,099 — 0,1 0,11 0,12
Керамзит, гравий, плотность 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, плотность 350 кг/м3 0,115 — 0,12 0,125 0,14
Керамзит, гравий, плотность 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, плотность 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, плотность 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, плотность 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, плотность 800 кг/м3 0,18
Гипсоплиты, плотность 1350 кг/м3 0,35 0,50 0,56
Гипсоплиты, плотность 1100 кг/м3 0,23 0,35 0,41
Перлитобетон, плотность 1200 кг/м3 0,29 0,44 0,5
Перлитобетон, плотность 1000 кг/м3 0,22 0,33 0,38
Перлитобетон, плотность 800 кг/м3 0,16 0,27 0,33
Перлитобетон, плотность 600 кг/м3 0,12 0,19 0,23
Пенополиуретан (ППУ), плотность 80 кг/м3 0,041 0,042 0,05
Пенополиуретан (ППУ), плотность 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ), плотность 40 кг/м3 0,029 0,031 0,04
Пенополиэтилен сшитый 0,031 — 0,038

Ваш дом может сохранят тепло

Достижения строительной индустрии, динамика развития которой поражает, дают нам возможность существенно экономить на содержании архитектурных сооружений. Сегодня можно построить не просто надежное, безопасное и эстетически привлекательно здание, но и придать ему такие свойства как поддержание определенного микроклимата и сохранение тепла. Для этого еще на этапе разработки проекта конструкции необходимо задействовать материалы, коэффициент теплопроводности которых соответствует нашим желаниям.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Немного о понятии теплопроводности

Итак, ответ на вопрос «то такое теплопроводность?» заключается в следующем: это процесс, в рамках которого элементы, обладающие большим количеством тепла, передают его менее нагретым частям конструкции, данный обмен не прекратиться ровно до тех пор, пока общая температура сооружения полностью не уравновесится. Если проецировать данное утверждение на плоскость ограждающих систем здания, то становится очевидным, что суть теплопроводности сводится к временному отрезку, за который температура становится равной во всех элементах конструкции. Если это время достаточно продолжительное, то, соответственно, теплопроводность самих материалов, на порядок ниже.

Что определяет коэффициент?

В целях систематизации полученных экспериментальным и вычислительным путем знаний, ученые в свое время решили характеризировать проводимость тепла различными строительными материалами через определённое понятие, знакомое многим специалистам соответствующей сферы. Речь идет о так называемом коэффициенте теплопроводности материалов. Данный показатель указывает какое именно количество тепла способно пройти через стандартную единицу площади материальной поверхности за одну временную единицу. В случае, когда описываемый параметр высок, то теплопередача происходит значительно быстрее, а потому и здание, построенное из стройматериала с такими свойствами, остынет гораздо быстрее желаемого. Таким образом, можно сделать вывод, что для экономии в отопительный период необходимо выстраивать дома из таких продуктов, коэффициент которых как можно ниже. Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Факторы, определяющие величину коэффициента

Конечно же, имея дело с какой-либо величиной, необходимо помнить, что существует целая система факторов, оказывающая определяющее воздействие на данное свойство. На свойство теплопроводимости материала влияют:

  • Структура. Если структура продукта неоднородна, то в нем обязательно присутствуют поры. В случае прохождения тепла сквозь пористую структуру происходит минимально возможное охлаждение. Итак, большое количество пор – залог качественного сохранения тепла.
  • Плотность. Высокие показатели данного параметра определяют достаточно тесное взаимодействие молекул. Вследствие сам процесс теплообмена, а также уравновешивание температур, которое происходит в итоге, осуществляется достаточно оперативно.
  • Влажность. Капельки жидкости, которые располагаются в порах продукта, выталкивают сухой воздух и ускоряют теплопередачу.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Чем пригодятся эти знания на практике?

В профессиональной среде строительные материалы распределяют на два типа, необходимо подчеркнуть, что такое распределение очень удобно для понимания актуальности использования тех или иных стройматериалов новичками. Предлагаются такие типы товаров:

  • конструкционные;
  • теплоизоляционные.

Конструкционная категория – это основа строительства стен, ограждений, перекрытий и прочих перегородок. С их свойствами вас ознакомит специально разработанная таблица теплопроводности, в которой в оптимальной форме изложены данные, заранее вычисленные специалистами. Согласно данному источнику в процессе создания железобетонных стен необходимо устанавливать толщину, приближенную к шести метрам. Однако, на практике совершить подобное практически нереально, ведь если придерживаться описанного правила, здание само по себе будет, пускай и прочным, но все же через чур громоздким, а это противоречит принципам функциональности и эргономичности в архитектуре.

Решим проблему громоздких конструкций

Что ж, практика, как и исторический опыт, свидетельствуют о том, что железобетонные строения, коэффициент теплопроводимости которых достаточно высок, все же являются безопасными, надежными, долговечными и функциональными. Чтобы не водружать на подобные стройматериалы еще и теплосберегательную функцию, можно с легкостью обойтись укладкой как внутри помещений, так и снаружи специальных продуктов.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Существует несколько вариантов утепления архитектурных конструкций. Это разнообразие вызвано в первую очередь тем, что еще на этапе проектирования специалист обязан определить решительно все пути, через которое тепло может преждевременно покидать конструкцию и ликвидировать данную проблему. Внушительное количество тепла, как правило, теряется из-за плохого утепления:

  • пола;
  • стен;
  • крыши;
  • дверей, а также окон.

Если проектировщик допустит ошибку, жильцам получившегося сооружения придется довольствоваться малой долей энергии, которую производят теплоносители. Чтобы будущий дом был и надежным, и теплосберегательным, профессионалы соответствующей отрасли разработали комбинации продуктов с различными свойствами:

  • Дом каркасного типа. В случае установки каркаса из древесины у работников получается обеспечить прекрасные прочностные показатели для всей конструкции в целом. Утеплительный элемент в таком случае располагается в свободном пространстве, которого предостаточно между стойками каркаса. Случается,так, что в итоге приходится утеплять с наружной стороны еще и сам каркас.
  • Стандартный дом. Ели здание возводится из традиционных продуктов вроде кирпича, шлакоблоков и бетона, утеплительное покрытие укладывается на поверхности здания снаружи.

При грамотном подходе к делу сохранения тепла вы сможете сэкономить большое количество денег и сделать свое жилище еще более комфортабельным.

Таблица теплопроводности материалов Коэффициент теплопроводности материалов обновлено: Декабрь 4, 2017 автором: kranch0 (1 оценок, среднее: 5,00 из 5) Загрузка... Читайте по теме

jsnip.ru

vest-beton.ru

Таблица теплопроводности строительных материалов

Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

Таблица теплопроводности строительных материаловТеплый дом – это несколько слоев разных строительных материалов

Читайте в статье:

Что такое теплопроводность

Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

  • бетон –1,51 Вт/м×К;
  • кирпич – 0,56;
  • древесина – 0,09-0,1;
  • песок – 0,35;
  • керамзит – 0,1;
  • сталь – 58.

Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.

Понятие теплопроводностиПонятие теплопроводности

Что такое коэффициент теплопроводности

Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.

Коэффициент теплопроводности стены из разных материалов при разной толщинеКоэффициент теплопроводности стены из разных материалов при разной толщине

Что влияет на теплопроводность строительных материалов

Есть несколько параметров, которые сильно влияют на тепловую проводимость.

  1. Структура самого материала.
  2. Его плотность и влажность.

Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.

Пористая структура строительного материалаПористая структура строительного материала

Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.

У влажной стены тепловая проводимость вышеУ влажной стены тепловая проводимость выше

Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.
Теплопотери домаТеплопотери дома

 

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% — это, как говорят, выброшенные на ветер деньги.

Андрей Павленков

Мнение эксперта

Андрей Павленков

Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО "АСП Северо-Запад"

Спросить у специалиста

«Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.»

Стена из бревен – одна из самых утепленныхСтена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.

Устройство каркасного дома в плане его утепленияУстройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К
Керамический полнотелый0,5-0,8
Керамический щелевой0,34-0,43
Поризованный0,22
Силикатный полнотелый0,7-0,8
Силикатный щелевой0,4
Клинкерный0,8-0,9
Тепловая проводимость кирпичной кладки при разнице температуры в 10°СТепловая проводимость кирпичной кладки при разнице температуры в 10°С

Теплопроводность дерева: таблица по породам

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница
Теплопроводность, Вт/м С0,150,20,40,110,0950,190,13
Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь
Теплопроводность, Вт/м С0,150,150,0450,150,40,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.

У древесины теплопроводность ниже, чем у бетона и кирпичаУ древесины теплопроводность ниже, чем у бетона и кирпича

Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь
Теплопроводность, Вт/м С4762236328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С — 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С — 385, при +100°С – 380, а при +700°С – 350.
Тепловая проводимость у меди выше, чем у стали почти в семь разТепловая проводимость у меди выше, чем у стали почти в семь раз

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К
Минеральная вата (базальтовая)500,048
1000,056
2000,07
Стекловата1550,041
2000,044
Пенополистирол400,038
1000,041
1500,05
Пенополистирол экструдированный330,031
Пенополиуретан320,023
400,029
600,035
800,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К
Бетон24001,51
Железобетон25001,69
Керамзитобетон5000,14
Керамзитобетон18000,66
Пенобетон3000,08
Пеностекло4000,11

Коэффициент теплопроводности воздушной прослойки

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.

Воздушная прослойка между внешней облицовкой и теплоизоляционным слоемВоздушная прослойка между внешней облицовкой и теплоизоляционным слоем

Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.

Воздушная прослойка внутри стеныВоздушная прослойка внутри стены

В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

Толщина стен из разных стройматериалов с одинаковым тепловым сопротивлениемТолщина стен из разных стройматериалов с одинаковым тепловым сопротивлением

Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

РегионМоскваСанкт-ПетербургРостовСочи
Теплопроводность3,143,182,752,1

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

seti.guru


Смотрите также