Теплопроводность тяжелого бетона. Теплопроводность бетона тяжелого


Теплопроводность тяжелого бетона - от чего зависит теплопроводность?

Теплопроводность тяжелого бетона

Теплопроводность тяжелого бетона – это способность данного материала передавать через себя тепловой поток, который возникает из-за разности температур на противоположных поверхностях конструкции.  Обычно для её определения используют коэффициент теплопроводности, показывающий изменение количества тепла, проходящего через 1м материала при повышении температуры на 1 градус.

От чего зависит теплопроводность?

  1. Структуры. Внутреннее строение бетона очень сильно влияет на коэффициент теплопроводности. В качестве примера стоит привести легкие бетоны – пенно- и газобетон, объем которых насыщен порами с воздухом. Поскольку коэффициент теплопередачи воздуха намного меньше, чем у бетона, среднее значение оказывается достаточно привлекательным.  С тяжелым бетоном дело обстоит строго наоборот: его плотность достаточно высока, более того, внутри материала находятся элементы армирования, поэтому и теплопроводность такого образца может достигать 1.7 Вт/(м*С).

  2. Плотности. Как ясно из приведенного выше примера, с ростом плотности материала увеличивается и теплопроводность.

  3. Влажности. Бетон имеет пористую структуру, внутрь которой часто попадает вода. При понижении температуры находящаяся в микропорах вода замерзнет и станет настоящим проводником тепла, уводя его из помещения. Коэффициент теплопроводности льда составляет 1.8 единицы. Однако не нужно забывать, что лед сам по себе поглощает тепло, переходя в жидкую фазу, поэтому в процессе строительства прикладываются значительные усилия для защиты бетона от попадания воды внутрь его структуры.

Из вышесказанного следует, что теплопроводность тяжелого бетона, варьирующаяся в пределах 1.5-1.7 единиц – это явно не то, что требуется для утепления постройки, поэтому используются специальные теплоизоляционные материалы или же конструкционно-теплоизоляционные бетоны, которые нашли широкое применение и в малоэтажном строительстве.

betonmagnat.ru

Теплопроводность бетона: таблица, коэффициент теплопередачи

 

Теплопроводность бетонаЧасто домашнему мастеру приходится выбирать материалы для постройки или обновления сооружений, поэтому важно обращать внимание на различные характеристики. Теплопроводность бетона — одна из них. Это свойство может отличаться у разных видов. В основном на теплопроводность влияет тип наполнителя. Чем легче материал, тем выше у него теплоизоляция, а чем тяжелее деталь — тем она прочнее.

Определение теплопроводности

При возведении различных зданий и сооружений используются разные материалы. Из-за довольно сурового климата чаще всего приходится проводить дополнительное утепление. Например, при возведении жилых помещений используются специальные изоляторы, поддерживающие комфортную для проживания температуру. Поэтому при выборе стройматериалов в обязательном порядке необходимо обратить внимание на их теплоизоляционные свойства.

Теплопроводность — это способность тела передавать энергию от более нагретых частей менее нагретым. Процесс может протекать как в твердых частях детали, так и в его порах. В твердых частях — это кондукция, в порах — конвекция. Материал быстрее остывает в его твердых частях. В порах же застаивается воздух, вследствие чего материал дольше держит тепло.

Зависимость от различных показателей

Теплоизоляционные характеристики бетона, кирпича, гипсокартона, дерева и многих других стройматериалов зависят от ряда параметров. Например:

  • Влаги.
  • Пористости.
  • Плотности.

Коэффициент теплопроводности бетонаЧем больше пор в детали, тем она теплее, а тяжелый стройматериал — прочнее. В современных условиях строительства используются различные типы материала. Но их условно можно поделить на два основных — это тяжелые и легкие пенистые типы.

Тяжелый сорт бетона тоже можно разделить на два вида: тяжелые и особо тяжелые. Для усиления прочности во второй вид добавляют различные наполнители — магнетит, металлический скреп, барит и др. Особо тяжелый бетон применяется при строительстве объектов, нуждающихся в защите от радиации. Плотность материала в этой категории начинается от 2500 кг/куб. м.

Обычный тяжелый бетон изготавливают с добавлением гранита, диабаза, известняка, на основе горного щебня. Плотность материала здесь варьируется от 1500 до 2500 кг/куб. м.

Легкий сорт бетона тоже можно поделить на две группы. Довольно часто в строительных работах используют виды на базе пористого наполнителя, в роли которого выступают шлак, керамзит, пемза и др.

Как измерить теплопроводность бетонаДля изготовления второй группы применяется обычный наполнитель, который вспенивается в процессе замеса. В итоге получается материал с очень большим количеством пор.

Теплоизоляция легкого бетона, конечно же, высокая, но вот прочность гораздо ниже тяжелого. Применяются такие стройматериалы при сооружении зданий, которые не подвергаются серьезным перегрузкам.

Ячеистый бетон можно разделить по назначению:

  • Теплоизолирующий (плотностью до 800 кг/куб.м).
  • Конструкционно-теплоизолирующий (плотность до 1350 кг/куб. м).
  • Конструкционный (до 1850 кг/куб.м).

Теплоизоляционные блоки чаще всего применяют для утепления стен, которые возводили из кирпича или цементного раствора. Кроме того, из такого бетона можно соорудить небольшие ограждающие конструкции.

К конструкционно-теплоизолирующим и просто конструкционным видам можно отнести керамзитобетон, шлакопемзобетон, пенобетон и др. Их можно использовать в качестве теплоизоляционного и строительного материала.

Влияние влаги

Теплопроводность строиетльных материаловВ строительных кругах известно утверждение, что сухие стройматериалы изолируют тепло гораздо лучше влажных. Объясняется это довольно-таки высокой степенью теплопроводности воды. Стены, потолки, полы защищены от холода благодаря порам в стройматериале, заполненным воздухом. При воздействии с влагой воздух вытесняется. Это приводит к повышению коэффициента теплопередачи бетона.

В холодный сезон влага, попавшая в материал, замерзает, что приводит к еще более печальным последствиям. Степень подверженности материала к проницаемости влагой у разных марок может быть отличной друг от друга.

Коэффициент теплопроводности бетона и железобетона составляет 0,18−1,75 Вт/м*К. Таблица теплопроводности бетона и других материалов:

Кирпич как изолятор

Кирпич как изоляторДля сопоставления свойств теплопроводности можно сравнить бетон и кирпич. По прочностным свойствам кирпич ничуть не уступает своему собрату, а иногда и превосходит его. То же самое можно сказать и про плотность. Современные виды кирпича, используемые в строительных работах, можно разделить на силикатный и керамический. Те, в свою очередь, могут быть полнотелыми, пустотелыми и щелевыми.

Таким образом, теплоизоляция кирпича и бетона идентична. Что силикатный кирпич, что керамический держат тепло довольно слабо. Это значит, что сооружения необходимо дополнительно утеплять. Изоляторами как в кирпичных, так и бетонных зданиях служат чаще всего пенополистирол и минеральная вата.

 

tvoidvor.com

Теплопроводность бетона ГОСТ - метод измерения и коэффициент

Теплопроводность бетона ГОСТ

Теплопроводность бетона ГОСТ характеризует температурным коэффициентом, который выражается в единицах Вт/(м*С). Данная величина показывает прирост количества энергии, которое будет «утекать» через объем бетона, если температура изменится на 1 градусов.  С точки зрения физики процесс теплопроводности представляет собой перенос энергии к частям материала с низкой температурой от более нагретых. Он осуществляет за счет движения молекул и атомов, поэтому чем выше плотность материала, тем лучше он проводит тепло.

Метод измерения теплопроводности

Для точного измерения теплопроводности бетона разработан специальный метод, зафиксированный в государственном стандарте №7076. Отбор образцов регламентируется требованиями ГОСТ 10180.

Данные вопросы требуют более подробного рассмотрения:

  1. Отбор образцов. Требования стандарта 10180 распространяются на бетоны всех видов, используемые в той или иной области строительства. Стандартом устанавливаются методы, позволяющие определить предел прочности бетона на сжатие, растяжение или устойчивость к раскалыванию. ГОСТ 10180 определяет и порядок отбора образцов: форму, размеры и число.

    Форма отливки должна плоской, а длинна ребра - 15 см. Количество подобных образцов регламентируется стандартом на тот или иной тип строительной смеси. Если этот момент в стандарте не освещен, то в соответствии с ГОСТ 7076 на испытания отправляют 5 образцов, взятых по ГОСТ 10180.

  2. Проведение испытаний. Измерение теплопроводности производится на плоских образцах, большая грань которых превышает меньшую в 5 раз. Тепловой поток, направляется сквозь широкую грань образца, после чего специальный прибор измеряет эффективную теплопроводность и термическое сопротивление.

Коэффициент теплопроводности

Коэффициент теплопроводности зависит от плотности материала, поэтому параметры разных видов искусственного камня могут отличаться. Например, теплопроводность бетона ГОСТ 26633-91 составляет 1.7 единицы. Такое большое значение данного коэффициента обусловлено тем, что тяжелые бетоны практически не изменяют для повышения их теплоизоляционных свойств. Плотность искусственного камня этого типа составляет 2200-2500 единиц, а наибольший интерес вызывает его высокая нагрузочная способность.

Легкие бетоны, наоборот, создатели максимально приближают к теплоизоляционным материалам. В жертву приносится все, даже прочностные характеристики материала, однако именно такой подход позволяет получить отличные звуко- и теплоизоляторы, которые могут использоваться и для возведения ограждающих конструкций. Разумеется, не все легкие бетоны имеют низкую прочность: некоторые из них применяются даже для создания длиннопролетных конструкций.

betonmagnat.ru

Теплопроводность бетона

Определение теплопроводности бетонаОпределение теплопроводности бетона требуется в том случае, если нужно получить параметры и габариты будущих ограждающих конструкций.

Методы определения 

Эту информацию получают в ходе процесса измерения термического сопротивления с помощью специального оборудования. Сама процедура и используемые технические средства регламентируются государственным стандартом 7076-99. Он описывает требования к образцу, прибору, градуировке и допускает проведение испытаний лишь по двум схемам – ассиметричной  и симметричной.

Сущность обоих методов заключается в том, что создается стационарный тепловой поток, который проходит через образец плоской формы. Толщина образца известна, а направление потока выбирается перпендикулярно наибольшим граням. В ходе процесса исследования производится измерение величины плотности теплового потока, а также температуры противоположных граней.

Число образцов, которое необходимо использовать для чистоты эксперимента, регламентируется для каждого конкретного вида бетона. Как правило, подобная информация содержится в государственном стандарте на конкретный материал. В том случае, когда ГОСТ не содержит подобных данных, число образцов выбирают равным пяти.

В ходе испытания в помещении должны поддерживаться определенные условия: уровень относительной влажности воздуха должен находиться в пределах 10% от 50-процентной отметки. Абсолютная температура в процессе испытаний должна находиться в пределах 290-300 К.

Приборы для определения

  • Устройство измерения эффективной теплопроводности. Оно должно быть аттестовано, согласно требованиям ГОСТ 7076-99.
  • Прибор, позволяющий измерять толщину плоских волокнистых изделий и устройство для измерения их плотности. Выбор данного оборудования регламентируется стандартом 17177.
  • Различное дополнительное оборудование.

В список дополнительного оборудования входит сушильных электрошкаф, имеющий верхний предел нагрева более 383К, а также лабораторные весы, штангенциркуль и линейка.

Подготовка к испытанию заключается в изготовлении образца нужной формы и проведении необходимых измерений.

Определение теплопроводности бетона производится на элементе в форме прямоугольного параллелепипеда,  лицевые грани которого имеют форму квадратов. Размеры лицевых граней выбираются равными стороне рабочих поверхностей измерительного прибора. Когда форма датчиков прибора – круг, то и образец представляет собой цилиндр.

Толщина образца должна быть меньше, чем длина ребра лицевой грани в 5 раз. Для цилиндрических заготовок сравнение производится с диаметром основания. Для того, чтобы измерения были точными, грани образца, контактирующие с прибором должны быть плоскими и параллельными. Максимальное отклонение не должно превышать 0.5мм.

betonmagnat.ru

Теплопроводность бетона |

Теплопроводность бетона

Теплопроводность — одно из важнейших свойств бетона, применяемого в ограждающих конструкциях. Чем легче бетон, тем, как правило, меньше его теплопроводность, поскольку уменьшение плотности бетона связано с повышением пористости, т. е. с вовлечением в объем бетона воздуха, являющегося в небольших порах прекрасным теплоизолятором.

Теплопроводность бетона в значительной мере определяется видом используемого заполнителя. Развитие производства пористых заполнителей для легких бетонов сделало возможным массовое применение легкобетонных стеновых панелей наружных стен в жилищном строительстве, теплоизоляционных и конструкционно-теплоизоляционных легких бетонов различного назначения.

Имеется определенная общая зависимость между плотностью и теплопроводностью, однако возможны и существенные отклонения от этой зависимости. Известно, что аморфные материалы менее теплопроводны, чем кристаллические.

Поэтому с точки зрения требований теплоизоляции предпочтительны заполнители, в составе которых больше стекла, например шлаковая пемза, получаемая быстрым охлаждением поризованно-го расплава (при быстром охлаждении расплава кристаллизация не происходит). Действительно, исследования показали сравнительно малую теплопроводность шлакопемзобетона.

На теплопроводность легкого бетона неплотной структуры (крупнопористого или малопесчаного) существенное влияние оказывает гранулометрический состав заполнителей, поскольку от него зависит характер межзерновой пористости. Из двух видов бетона с одинаковым общим объемом пор мелкопористый, как правило, будет иметь меньшую теплопроводность, так как эффективная теплопроводность воздуха, включающая и передачу излучением, зависит от размера пор.

Теплопроводность бетона зависит также от его влажности. Теплопроводность воды составляет 0,58 Вт/(м-°С), что во много раз больше теплопроводности воздуха. Поэтому, если поры бетона вместо воздуха заполняет вода, то теплопроводность его резко увеличивается, теплопотери через увлажненные ограждающие конструкции возрастают, а в зимний период возможно их промерзание. Теплопроводность льда составляет около 1,8 Вт/(м-°С), таким образом с промерзанием увлажненного бетона его теплопроводность еще более увеличивается.

Эксплуатационная влажность легкого бетона зависит от равновесной влажности примененного пористого заполнителя в условиях сорбции (т. е. поглощения влаги из окружающего воздуха) и десорбции (высыхания переувлажненного заполнителя). Десорбционная влажность, как правило, выше сорбционной, однако для таких заполнителей, как керамзит, аглопорит, пемза, она при относительной влажности воздуха до 60… 80% составляет лишь сотые доли процента и не имеет существенного значения. Такие заполнители, как древесные опилки, могут иметь равновесную влажность порядка 15% а это сказывается на теплопроводности.

При приготовлении бетонной смеси и пропаривании изделий пористые заполнители обычно переувлажняются. Поэтому большое значение имеет скорость высыхания бетона, связанная с влагоотдачей заполнителя. Некоторые заполнители отличаются замедленной влагоотдачей. К их числу относится, в частности, мелкий вспученный перлит.

midas-beton.ru

Теплопроводность бетона

Теплопроводность бетона

Теплопроводность бетона – это процесс, в ходе которого внутренняя энергия вещества переносится к менее нагретым частям конструкции. Так в холодное время года часть тепла «утекает» из жилья именно через стены, а летом, наоборот, прогревшийся материал повышает температуру в помещении на пару градусов. Разумеется, подобное представление несколько упрощенно, но именно оно позволяет понять, почему так важно знать такой параметр, как теплопроводность бетона.

Одно из важнейших свойств бетона – удерживать тепло. Как правило, о теплопроводности говорят, если речь идет о легких бетонах. Эти материалы редко можно отнести к классу конструкционных, но в качестве теплоизоляторов им практически нет равных. Нужно отметить, что уровень теплопроводности у разных легких бетонов различается. На него влияют и тип структуры бетона, и характер использованного заполнителя.

В качестве примера можно взять пенобетон, который в разрезе напоминает пористый шоколад. Наличие воздуха в структуре материала обеспечивает его сравнительно малый вес и повышает термическое сопротивление. Пенобетон позволяет снизить потери  тепла в помещении на 20-30%, да и микроклимат он создает благоприятный.

С другой стороны, для повышения теплопроводности сегодня широко используются и специальные пористые заполнители. Тот же керамзитобетон часто встречается в малоэтажном строительстве, ведь на его основе можно изготовить и легкие стеновые панели и выполнить качественную звукоизоляцию помещения. Керамзитобетон легко выигрывает сравнение с классической кирпичной кладкой: его теплопроводность в 2 раза ниже. При плотности искусственного камня в 1000 кг/м3 его термическое сопротивление составляет 0.41 единицы, а при повышении объемной массы до 1200 кг/м3 – 0.52 единицы.

Конструкционный бетон, напротив, часто разрабатывается в ущерб увеличению теплопроводности. Из него выполняются несущие элементы и нагруженные конструкции, которые, чаще всего находятся под защитой внешних стен. Даже в том случае, если используется монолитная технология возведения постройки, есть много способов, позволяющих надежно защитить внутренние помещения от потерь тепла.

Теплопроводность бетона в общем случае даже ниже, чем у кирпича. Если кирпич может похвастать 0.8 Вт/(м*С), то тяжелый бетона имеет показатель в 1.4 единицы. Именно поэтому, когда требуется искусственный камень с высокой степенью теплоизоляции, то стараются использовать специальные наполнители. Например, на основе стекла: шлаковая пемза, которую получают быстрым охлаждением насыщенного воздухом расправа, отлично подходит для этой цели.

betonmagnat.ru

Теплопроводность бетонных плит - плотность и характеристики

Теплопроводность бетонных плит

Главный плюс ЖБИ в том, что теплопроводность бетонных плит может быть существенно ниже, чем у монолита. Чтобы не вводить никого в заблуждение, разберем данный вопрос подробно. Коэффициент теплопроводности находится в прямой зависимости от плотности материала. В качестве примера можно рассмотреть бетоны легкие и тяжелые. В первом случае плотность искусственного камня составляет 500 единиц, во втором 2500. Такой разброс сказывается на теплопроводности бетона: в первом случае она может составлять всего 0,12 Вт/(мС), а во втором превышать отметку 1.7.

С ЖБИ ситуация обстоит аналогичным образом: если в легком типе бетона снижение средней плотности достигается за счет использования пористого заполнителя, то в случае с плитами все проще. Конструкция ЖБИ разрабатывается таким образом, что они имеют пустоты, снижающие среднюю плотность, но практически не влияющие на прочностные характеристики плиты.

Точное значение теплопроводности той или иной плиты может быть получено у производителя, а может быть и рассчитано, но в данном случае, необходимо знать точный состав и пропорции использованных компонентов:

  1. Песок. Плотность песка относительно велика, а в качестве теплоизолятора его даже рассматривать не стоит. Коэффициент теплопроводности данного материала составляет 0.35 Вт/(мС).

  2. Крупный наполнитель. В зависимости от типа бетона этот материал может быть пористым или однородным. К первой группе относятся шлаки, пемза, аглопорит и щебень из пористых горных пород. Во вторую группу вошли гранит, известняк и гравийный щебень. Пористый заполнитель, как уже было показано выше, существенно снижает теплопроводность, поэтому именно такие панели привлекательны для проектировщиков. Как правило, эти материалы относятся к группе конструкционно-теплоизоляционных, поэтому не только хорошо держат тепло, но и имеют необходимую прочность.

  3. Плотность армирования. Сталь – отличный проводник тепла. Именно она может выступать в роли мостика холода, но правильная конфигурация арматуры позволяет уменьшить её влияние на теплопроводность до приемлемого минимума.

Из вышесказанного очевидно, что теплопроводность бетонных плит в общем виде определяется двумя факторами: плотностью материала и характеристиками заполнителя. Причем нужно учитывать не только его плотность, но и тип, ведь аморфные вещества хуже проводят тепло, чем кристаллические.

betonmagnat.ru