Трещиностойкость (вязкость разрушения) бетона. Вязкость бетона


Какими свойствами обладают бетонные смеси?

Реологические свойства бетонной смеси Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.

Основной структурообразующей составляющей в бетонной смеси является цементное тесто. Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении. При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости. Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией.

Технические свойства бетонной смеси При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.

Для оценки удобоукладываемости используют три показателя: подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси; жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси; связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью. Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.

Классификация бетонных смесей Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.

Удобоукладываемость бетонной смеси Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси — подвижность и жесткость.

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков. Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.

Деформативные свойства бетона Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.

Область условно упругой работы бетона — от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.

Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины. Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости. При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:

Есж = Ер = Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя — щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести. Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

Усадка и набухание бетона

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих.

Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в. наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

Морозостойкость бетона Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 сут выдерживания в камере нормального твердения или через 7 сут после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.

Водонепроницаемость бетона С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.

Теплофизические свойства бетона Теплопроводность — наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.

Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.С°). Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.

Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры.

Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.

Статья прочитана 402 раз(a).

skosr.ru

Производство бетона - ударная вязкость, стойкость к ударам и износу

Примерами конструкций, подвергающихся ударам, могут служить бетонные сваи, полы промышленных зданий из раствора или бетона, на которые мостовым краном регулярно сбрасываются тяжелые грузы, бетонные дамбы, подвергающиеся ударам морских волн с камнями и галькой, фундаменты, испытывающие вибрации, которые представляют собой по сути дела серии кратких ударов (здесь речь идет также о пределе усталости), бетонные пирсы, по которым ударяют пристающие суда, конструкции, подвергающиеся артиллерийскому обстрелу (сооружения военного назначения). Наиболее полно в лабораториях исследованы вопросы, связанные с производством сборных обычных или преднапряженных железобетонных свай, забиваемых в грунт копром. Известно, что во избежание разрушения бетона свай копровой бабой необходимо принимать различные меры предосторожности, несмотря на то, что верхняя часть сваи обычно хорошо упрочняется и имеет стальной оголовник, выдерживающий высокие нагрузки. Существует немало способов проведения лабораторных испытаний на прочность при ударе, однако все они основаны на одном общем принципе. Молот определенной массы сбрасывается в свободном падении на бетонный образец. Считают число ударов, необходимых для разрушения бетона, или отмечают высоту падения, достаточную для разрушения образца за один удар. Энергию удара (кгм) легко подсчитать. Скорость при ударе v (м/с) определяется по формуле: v = ?2gh, где g — 9,81, h — высота, м. Таким образом, груз массой 50 кг, падающий с высоты 1 м, обладает такой же энергией удара, какую имеет груз массой 12,5 кг, падающий с высоты 4 м, однако скорость этого последнего в момент удара будет в два раза выше. Груз можно сбрасывать на бетонный цилиндр размером 15X30 см или 16X32 см, на бетонную плиту, лежащую ровно на песчаной постели, или на бетонную плиту, расположенную на двух опорах. В США нормализованы испытания на разрушение природного камня, которые состоят в сбрасывании груза массой 2 кг с высоты, превышающей 1м, до разрушения образца. Западногерманские нормы включают описание аппаратуры, также применяемой для испытания природного камня. Масса груза 50 кг, а максимальная высота падения 1,5 м. Подобный метод применяют и для испытаний бетона, из которого изготовляют цилиндрические образцы размером 15×30 см с оголовником толщиной 8 см. Число ударов, которое способен выдержать образец, начинает быстро уменьшаться, начиная с определенной высоты, примерно 60 см (по данным этих испытаний). Хорошая прочность при сжатии (более 450 бар) — необходимое условие, но ее одной недостаточно для хорошей ударной вязкости.

Под ударами твердого тяжелого тела бетон не имеет времени приспособиться, поскольку деформации длятся очень короткое время и никакое перераспределение усилий невозможно. Поэтому весьма сильно возрастает роль местных дефектов материала и возникает необходимость получения высокой однородности состава. По всей видимости, наибольшее значение имеют такие факторы, как расход воды, тип заполнителя и условия выдерживания бетона. Существует явно выраженная зависимость между В/Ц и прочностью на удар. Как видно, для достижения достаточно хорошего сопротивления наносимым подряд ударам В/Ц бетонной смеси не должно превышать 0,45. Бетон гораздо лучше сопротивляется ударам, когда они наносятся после достаточно продолжительного предварительного выдерживания (2—3 месяца). По данным исследований, проводившихся Дамсом (1969 г.), можно рекомендовать следующие правила, которых следует придерживаться при изготовлении бетона с высокой ударной прочностью: применять цемент высоких марок с расходом 350—400 кг/м3, В/Ц не более 0,45, заполнителем должен служить щебень, частицы которого имеют шероховатую поверхность, неправильной формы, с низким модулем деформации, диаметром менее 30 мм и содержанием песка с частицами до 7 мм более 60%. Выдерживать бетон необходимо во влажном состоянии не менее 7 суток. Полученный бетон следует подвергать ударам не ранее чем через 28 суток, а если возможно, то через 90 суток.

lab-smr.ru

Вязкость и удобоукладываемость

Предельное количество воды, которое может содержаться в бетонной смеси зависит от механических воздействий на цементное тесто при транспортировке, вибрациях, укладке и т.д. Для оценки этого количества можно воспользоваться формулой:

Впред = 1,35·Нг·Ц+П·Вп+0,07·Sщ

где Нг – нормальная густота цементного теста, Вп – водопотребность песка, Sщ – удельная поверхность щебня, которая вычисляется по формуле:

Sщ = 1,6·(ρнщ/ρищ)·(a40+2a20+4a10+8a5),

где a – частные остатки на стандартных ситах в %.

Исходя из условия неподвижности крупных зерен в бетонной смеси, получим условие нерасслаиваемости смеси. На зерно крупного заполнителя действует две силы: сила тяжести и сила сопротивления среды. Первая равна

Q1 = πD3·(ρзап – ρраст)·g,

где D – средний диаметр зерна заполнителя, ρзап, ρраст – плотности заполнителя и раствора, g – ускорение свободного падения. Вторая сила равна:

Q2 = f·π·D2·τпред,

где f – коэффициент, учитывающий форму зерен. Его значение лежит в диапазоне от 0,65 до 1,00; τпред – предельное напряжение сдвига. Чтобы смесь не расслаивалась, необходимо выполнение условия:

Q1 < Q2,

откуда получим

τпред > D·(ρзап – ρраст)g/(6f).

Из последней формулы можно сделать вывод, что чем более крупные зерна находятся в бетонной смеси, тем более она склонна к расслаиваемости. В случае формы зерен близким к шарам, можно воспользоваться формулой Стокса для движения шаров в жидкости:

πD3g(ρзап – ρраст)/6 = 3πD·η·v,

где v – скорость оседания частиц; η – вязкость раствора, которую можно регулировать содержанием песка и цемента.

Удобоукладываемость и вязкость – величины обратнопропорциональные друг другу, при этом вязкость дисперсной системы (среды + коллоидные частицы) увеличивается пропорционально вязкости среды и концентрации дисперсных частиц. Применив это утверждение к цементному тесту, можно сделать вывод, что с увеличением количества воды уменьшается вязкость дисперсной системы и, соответственно, увеличивается удобоукладываемость. Изменение же количества песка или цемента приводит к неоднозначным последствиям – с одной стороны будет увеличиваться вязкость растворной части (поскольку увеличивается дисперсная фаза относительно воды или цементного теста), а с другой – увеличивается само содержание растворной части, тем самым уменьшается содержание дисперсной фазы – частиц крупного заполнителя – относительно среды: цементное тесто + песок. В результате эти два фактора взаимно компенсируют друг друга и служат основой для «закона» о «постоянстве водопотребности смеси».

Удобоукладываемость бетонной смеси можно повысить путем добавления цементного теста с сохранением отношения Ц/В, которое обеспечивает прочность бетона. Однако этот способ не является рациональным, поскольку наиболее прочные коагуляционные структуры, ухудшающие удобоукладываемость, образуются в местах контакта цементного теста с зернами крупного заполнителя. Следовательно, разработав метод разрушения коагуляционных структур вблизи контактов, можно улучшить удобоукладываемость. Один из этих методов – предварительное увлажнение заполнителей с общим сохранением В/Ц. Например, согласно экспериментам увлажнение до 3% песка снижает жесткость смеси в 5 раз! Также существуют специальные химические добавки, замедляющие рост коагуляционных структур в области контактов цементного теста с зернами заполнителей. С физической точки зрения действие таких добавок сводится к повышению электрического потенциала коллоидных частиц. Наибольший же эффект для улучшения удобоукладываемости дают специальные органические добавки – пластификаторы. С физической точки зрения эти добавки создают вокруг частиц тонкие пленки (гидрофобные/гидрофильные), которые позволяют значительно снизить содержание воды, при сохранении удобоукладываемости. При этом снижение воды приводит к увеличению прочности бетона.

betonvtomske.ru

Технологические свойства бетонных смесей: удобоукладываемость и однородность - Статьи

К основным технологическим свойствам бетонных смесей можно отнести их удобоукладываемость и способность сохранять однородность и не расслаиваться. Под удобоукладываемостью бетонных смесей понимают их способность заполнять форму или опалубку и уплотняться под воздействием механических усилий. Первоначально под удобоукладываемостью понимали степень жесткости бетонных смесей, оцениваемой по времени или работе, необходимой для полного уплотнения бетонной смеси при вибрировании. В современной технологии бетона термином «удобоукладываемость» объединяют обычно показатели подвижности и жесткости бетонной смеси. Показатели удобоукладываемости тесно связаны с реологическими свойствами бетонной смеси - вязкостью и предельным напряжением сдвига. Они являются условными и при достаточной простоте измерения позволяют оценить изменение пластичности смесей при изменении различных технологических факторов, их соответствие условиям формования и уплотнения. Мерой удобоукладываемости подвижных смесей является показатель осадки нормального конуса (конуса Абрамса) в см из свежесформованной бетонной смеси. Для жестких бетонных смесей мерой удобоукладываемости является показатель жесткости в с, определяемый временем, необходимым для растекания и превращения под действием вибрирования в равновеликий цилиндр конуса из бетонной смеси (способ Вебе). На принципе изменения формы бетонной смеси в процессе ее вибрирования основан ряд других способов оценки удобоукладываемости. По способу Б. Г. Скрамтаева жесткость оценивают временем вибрирования, необходимым для расплывания конуса бетонной смеси, отформованной штыкованием в форме размером 20x20x20 см. Втехническом вискозиметре Пауэрса-Десовабетонный конус под влиянием вибрации переходит в состояние вязкого течения и превращается в равновеликий цилиндр по принципу сообщающихся сосудов. Соотношение показателей жесткости, определенной способами Вебе, вискозиметром Пауэрса-Десова и упрощенным способом Скрамтаева составляет 1 : (2-3) : (3-4). По мере увеличения показателя жесткости это соотношение возрастает. В зависимости от показателей подвижности по осадке конуса и жесткости по Вебе установлены марки бетонной смеси по удобоукладываемости . Наряду с указанными, предложен ряд других способов оценки Удобоукладываемости бетонных смесей, основанных на измерении расплыва конуса, времени истечения, пенетрации шарика, погружения цилиндрического тела с полукруглой головкой, падающего с определенной высоты и др. Для оценки Удобоукладываемости жестких смесей предложено измерять энергию, необходимую для их уплотнения, например, по мощности, потребляемой виброплощадкой. Можно также использовать метод измерения электропроводности уплотняемой бетонной смеси, замера динамики уплотнения по изменению уровня уплотняемой смеси в сосуде, определения коэффициента уплотняемости как отношения объемной массы смеси, уплотненной определенным способом, к ее теоретическому значению и др. На показатели удобоукладываемости оказывают влияние продолжительность и температура выдерживания смеси до укладки. Изменение удобоукладываемости бетонной смеси при ее выдерживании обусловлено гидратацией цемента и изменением коагуляционной структуры, поглощением воды заполнителями и ее испарением. Изменение удобоукладываемости во времени зависит от минералогического состава и тонкости помола цемента, вида и содержания добавок, плотности и влажности заполнителей, водосодержания смеси. Снижение подвижности бетонных смесей существенно зависит от значения В/Ц. Это можно объяснить влиянием В/Ц на скорость гидратации и процессы структурообразования цементного камня. Результаты наших опытов показали, что комплексные добавки полифункциональных модификаторов (ПФМ), содержащие суперпластификатор и замедлители схватывания, во всех случаях существенно изменяют кинетику потери подвижности литыми бетонными смесями. Наиболее сильное стабилизирующее действие оказывают сахаросодержащие ПАВ, наименьшее - ПАВ лигносульфонатного типа. Если при нормальной температуре в течение 30 мин с момента затворения литая смесь без добавок теряет подвижность на 4-6 см, с добавкой суперпластификатора С-3 - на 6-10 см, то добавки ПФМ позволяют за это время обеспечить практически неизменную подвижность смеси. С помощью сахаросодержащих ПФМ удается продлить жизнеспособность литых смесей до 1-1,5 ч, в то время как смеси с одним суперпластификатором С-3 снижают свою подвижность в два раза и более. При сопоставимых условиях темп потери подвижности увеличивается с уменьшением В/Ц цементного теста в бетонной смеси. Кривые падения подвижности литых бетонных смесей с добавками ПФМ можно разбить на этапы относительной стабильности и прогрессирующего снижения подвижности. Как весь период снижения подвижности, так и период относительной стабильности тесно скоррелированы с началом схватывания цемента и периодом формирования структуры на кривых пластической прочности при прочих равных условиях. Нормальная густота цементного теста существенно влияет на его реологические свойства. Как правило, увеличение нормальной густоты цемента на 1 % повышает водопотребность бетонной смеси на 1,5-3%. Однако в ряде случаев даже при одинаковой нормальной густоте водопотребность бетонных смесей на различных портландцементах может отличаться на 5-10%, что можно объяснить дополнительным влиянием минералогического состава и тонкости помола. Влияние заполнителей на удобоукладываемость и водопотребность бетонных смесей связано с их удельной поверхностью и пустотностью. Оба эти показателя влияют на толщину прослойки цементного теста на зернах заполнителей - одного из главных физических параметров, влияющих на подвижность бетонной смеси. Удельная поверхность и пустотность заполнителей определяются их крупностью, формой, зерновым составом, содержанием отмучиваемых частиц. Удельную поверхность заполнителей можно рассчитать в зависимости от их зернового состава по справочным таблицам и эмпирическим формулам. Значение удельной поверхности смеси заполнителей не зависит от расположения зерен в пространстве. Химически, преимущественно в результате ионного взаимодействия, вода связывается в стехиометрических соотношениях с минералами цемента в процессе гидратации. В начальный период твердения (до1ч) доля прореагировавшего Цемента не превышает 1 % и соответственно количество химически связанной воды незначительно. Физико-химическая связь воды в бетонной смеси характерна в основном в адсорбционных пленках, образуемых на поверхности твердых частиц ненасыщенными ван-дер-ваальсовыми силами. Толщина адсорбционных водных пленок, обладающих свойствами псевдоупругого твердого тела, уменьшается с увеличением дисперсности твердых частиц. Так, для песка со средней крупностью зерен 1,65 мм она составляет 0,285 мкм, 0,3 мм - 0,114 мкм. На зернах цемента и гидратных новообразований толщина адсорбционного слоя воды составляет от нескольких единиц до нескольких тысяч молекулярных диаметров. Нетрудно подсчитать, зная удельную поверхность заполнителей, что количество адсорбционно связываемой воды в бетонной смеси составляет 2-4 л, т.е. 1-3% всей воды затворения при использовании абсолютно сухих материалов. Адсорбционные слои на твердых поверхностях возникают как при поглощении паров из воздуха (гигроскопическая влага), так и при непосредственном соприкосновении с водой. Диполи воды, непосредственно прилегающие к твердым поверхностям и удерживаемые под большим давлением поля молекулярных сил, образуют прочносвязанную воду, несколько удаленные и связанные диполь-дипольными взаимодействиями создают рыхлосвязанную воду. На твердых поверхностях компонентов бетонных смесей адсорбируются как водные молекулы, так и ионы, растворенные в воде, образуемые при растворении и гидролизе цемента. При этом на поверхностях раздела фаз возникает двойной электрический слой, толщина которого обратно пропорциональна концентрации ионного раствора и меньше 0,01 мкм. Вслед за образованием адсорбционных пленок по мере увлажнения происходит смачивание частиц цемента и заполнителей водой. Смачивание водой является свойством гидрофильных твердых поверхностей и обусловлено поверхностным натяжением. Поверхностное натяжение твердых тел определяют косвенными экспериментальными методами или вычисляют теоретически на основании современной электростатической теории кристаллической решетки, развитой М. Борном и Я.И. Френкелем. Величина поверхностного натяжения различных твердых тел различна, но всегда значительно больше чем жидкостей. Например, расчетные значения поверхностной энергии для МдО и СаСО3 равны соответственно 1300 107 и 380 10 7 Дж/см2, а экспериментально определенные 1200 Ю-7 и 230 10"7 Дж/см2. По сравнению с адсорбционной, вода смачивания удерживается значительно слабее и включает диффузный слой, состоящий из молекул, способных передвигаться от одной частицы к другой до установления равновесия. Для диффузной воды характерна меньшая скорость передвижения по сравнению со скоростью поднятия воды в капиллярах. Оптимальное относительное водосодержание цемента, условно соответствующее его полному смачиванию при обычных условиях (без введения пластификаторов, прессующих воздействий и др.), соответствует примерно К = 0,876Кн г, где Кн г - водоцементное отношение цементного теста нормальной густоты. При оптимальной влажности Кмв цементное тесто характеризуется постоянными реологическими параметрами - предельным напряжением сдвига (10= 1040 Па) и коэффициентом вязкости (Кв = 20 ПаЧс), а также имеет сингулярную точку на кривой электросопротивления. Одна из важных технологических задач - минимизация водопотребности бетонных смесей без ухудшения показателей их удобоукладываемости решается за счет введения пластифицирующих добавок и оптимизации зернового состава заполнителей, применения цементов с пониженной нормальной густотой. Предложено значительное число пластифицирующих добавок, рассмотренных в разделе 1. При неизменном водосодержании и начальной осадке конуса от 1 до 4 см подвижность бетонных смесей при введении слабопластифицирующих добавок достигает 5-9 см, эффективных пластификаторов 10-15 см и суперпластификаторов до 20 см и более. При постоянной подвижности уменьшение водопотребности составляет соответственно 5-10,10-20, 20-30% и более. Добавки пластификаторов существенно изменяют реологические характеристики бетонных смесей даже при практически неразрушенной структуре, уменьшают предельное напряжение сдвига, эффективную вязкость и модуль упругости сдвига. Коэффициент тиксотропии, характеризующий спад значений пластической вязкости на единицу изменения скорости сдвига, в опытах В.А. Бабаева для бетонных смесей без добавок составлял около 106 Пас2/м, при введении суперпластификатора С-3 он изменился до 16 105 Па с2/м. С увеличением объема цементного теста эффективность добавок возрастает. Увеличение дозировки суперпластификаторов в некотором интервале (для С-3, например, от 0,2 до 1 % массы цемента) приводит к почти линейному изменению водопотребности. При дозировках больше оптимальных скорость снижения водопотребности уменьшается. При использовании ряда пластификаторов предпочтительно использование низкоалюминатных цементов. Увеличение в цементе содержания алюминатной фазы вызывает необходимость повышения дозы добавок. Примерно одновременно (в начале 30-х годов прошлого столетия) и независимо друг от друга В.И. Сорокером в СССР и Ф.Р. Макмилланом в США было установлено правило постоянства водопотребности(ППВ).Ими было найдено, что при неизменном водосодержании расход цемента в пределах 200-400 кг/м3 не влияет существенно на удобоукладываемость бетонных смесей. Первоначально ППВ распространяли лишь на малоподвижные смеси, а затем оно нашло экспериментальное подтверждение для жестких и подвижных бетонных смесей. Основываясь на ППВ, сначала С.А. Миронов, а затем и другие авторы предложили графики и таблицы для ориентировочного определения водосодержания бетонных смесей в зависимости от показателей осадки конуса и жесткости. Эмпирические рекомендации по определению водосодержания бетонных смесей с учетом ППВ в настоящее время являются обычными в методиках проектирования составов тяжелых бетонов, рекомендуемых в большинстве стран. В соответствии с ППВ водопотребность бетонных смесей необходимая для достижения определенного показателя удобоукладываемости, является практически постоянной в определенном диапазоне расходов цемента и В/Ц. Признавая ППВ, различные авторы, вместе с тем, приводят различные значения предельных расходов цемента, в диапазоне которых это правило справедливо. Так, большинство авторов верхний предел применимости ППВ принимает 400 кг/м3, В.П.Сизов считает, что оно справедливо до 350 кг/м3, а А.Е. Десов - до 300 кг/м3. По мере увеличения жесткости понижаются как нижний, так и верхний предельные расходы цемента. Даже в пределах одной жесткости верхний предельный расход цемента колеблется от 280 до 380 кг/м3, а нижний - от 140 до 200 кг/м3.

Авторы: Л. И. Дворкин, О. Л. Дворкин

  • В нашей системе за кубометр бетона цена для Балашихи определяется в процессе тендера между качественными растворными узлами Балашихинского района и окрестных населенных пунктов.
  • Представленные здесь данные поспособствуют уменьшению затраты на бетон в Троицке.
  • Подробные данные о бетоне м450 оптом (цена, распространенность, круг употребления и точки отгрузки).

m350.ru

Свойства бетонных и растворных смесей

Бетонной смесью называют рационально подобранную и тщательно перемешанную смесь вяжущего, заполнителей, воды и, в необходимых случаях, специальных добавок.

От свойств бетонной смеси, а также качества ее укладки и уплотнения во многом зависят основные свойства бетона. Для того, чтобы бетонная смесь легко укладывалась в опалубку (форму), хорошо уплотнялась и не расслаивалась при транспортировании, она должна обладать определенной подвижностью (текучестью) и пластичностью (связностью). Бетонные смеси с повышенным содержанием воды, обладающие способностью растекаться, перемещаться по наклонным желобам и трубам и заполнять форму под воздействием собственной массы, называют подвижными.

Смеси с малым водосодержанием, приобретающие подвижность (текучесть) лишь при внешних механических воздействиях (например, вибрировании), получили название жестких. Все качественные смеси должны обладать пластичностью, т. е. способностью деформироваться при транспортировании, укладке и уплотнении без разрывов и расслоения. Возможное расслоение бетонной смеси, объясняется тем, что при внешних воздействиях ее частицы, имеющие неодинаковые размеры и массу, оседают в ней с различной скоростью. Более крупные и тяжелые зерна заполнителей оседают быстрее и оттесняют кверху мелкие и легкие частицы заполнителя, зерна цемента и воду.

Подвижность в сочетании с пластичностью определяют удобоукладываемость смеси. Удобоукладываемость подвижных смесей принято оценивать осадкой стандартного конуса, а жестких — показателем жесткости, который определяют при помощи технического вискозиметра, жестко закрепленного на лабораторной виброплощадке с амплитудой колебаний 0,35 мм и частотой 47—50 Гц (2800-3000 кол./мин). При крупности заполнителя более 40 мм жесткость смеси определяют упрощенным методом, предложенным Б. Г. Скрамтаевым. Для приведения показателей жесткости бетонкой смеси, найденных упрощенным методом, к показателям жесткости, устанавливаемым техническим вискозиметром, полученные первые значения необходимо умножить на 1,5. Удобоукладываемость смеси является одним из основных факторов, определяющих выбор механизмов и приспособлений для ее транспортирования, укладки и уплотнения. Степень связности бетонной смеси оценивают одновременно при определении величины подвижности. У бетонной смеси, не обладающей достаточной связностью, при наполнении стандартного конуса наблюдается отделение цементного молока, а после снятия металлического конуса — осыпание и разваливание бетонного конуса.

По удобоукладываемости (в зависимости от величины подвижности и показателя жесткости) бетонные смеси условно делят на текучие (литые), имеющие осадку конуса (ОК) 17-20 см, подвижные с ОК 10-16 см, умеренно подвижные с ОК 6-9 см, малоподвижные с OK 1-5 см и показателем жесткости Ж 25-15 с, умеренно жесткие с ОК, равной нулю, и Ж 30-60 с, жесткие с Ж 75-120 с, повышенно жесткие с Ж 150-200 с и особо жесткие с Ж более 200 с.

Поскольку подвижные смеси характеризуются повышенным содержанием воды, то необходимая связность у них достигается увеличением количества цементного теста (т. е. по существу увеличением расхода вяжущего), а также более высоким содержанием песка по отношению к имеющемуся в бетоне количеству крупного заполнителя. Так как вяжущее в подвижных смесях расходуется не только для обеспечения необходимой прочности и плотности будущего бетона, но и для получения пластичной удобоукладываемой смеси, это приводит к неудовлетворительному использованию вяжущего в бетоне. Кроме того, увеличенное содержание воды в подвижных смесях замедляет рост прочности бетона в раннем возрасте и удлиняет сроки твердения изделий в формах.

Жесткие смеси вследствие малого содержания воды и, как правило, пониженного расхода вяжущего имеют в единице объема меньшее количество цементного теста, что обусловливает их рыхлую землисто-влажную структуру. Однако при вибрационных воздействиях жесткая смесь приобретает подвижность, необходимую для хорошего заполнения формы и уплотнения смеси. При этом в жестких смесях по сравнению с подвижными за счет более компактного размещения зерен заполнителя требуется меньшее количество цементного теста и песка для заполнения всех межзерновых пустот и покрытия поверхности зерен заполнителя равномерным слоем цементного теста. Поэтому жесткие смеси отличаются большей степенью насыщения крупным заполнителем, вследствие чего полнее используется несущая способность «каркаса» бетона, образуемого крупным заполнителем, а вяжущее расходуется только по прямому назначению — для соединения зерен заполнителя между собой и получения требуемой прочности и плотности бетона.

Отмеченные преимущества жестких смесей обеспечивают по сравнению с подвижными повышение прочности бетона или при равной прочности — снижение расхода вяжущего на 10-25%, сокращение в 1-3 раза сроков твердения бетона в первые 1-3 суток, а также дают возможность производить полную или частичную распалубку немедленно по окончании формования изделий. В то же время применение жестких смесей вызывает значительное усложнение процессов приготовления смеси и формования изделий: для получения однородной жесткой смеси требуются бетоносмесители принудительного перемешивания, более высокая точность дозирования воды, так как даже при небольших отклонениях в содержании воды резко меняются свойства смеси, интенсивное уплотнение бетона при формовании изделий.

Удобоукладываемость бетонной смеси зависит в основном от величины сил трения между отдельными составляющими смеси: чем меньше эти силы, тем удобоукладываемость лучше. Преодолеть трение между зернами заполнителей в бетонной смеси можно путем увеличения механической работы уплотнения, а при одной и той же работе уплотнения — повышением относительного содержания цементного теста, которое в данном случае выполняет роль смазки, и уменьшением его вязкости. Чем больше работа уплотнения, тем меньше требуется цементного теста.

Для определенного вида вяжущего при неизменном его расходе, увеличивая или уменьшая количество воды (т. е. изменяя В/Ц), можно в широких пределах менять вязкость теста (а отсюда и удобоукладываемость смеси), получая смеси от очень подвижных (литых) до особо жестких. Наименьшее количество воды в смеси определяется применяемым оборудованием для качественной ее укладки в формах, а наибольшее — предельно допустимой вязкостью теста, выше которой смесь начинает расслаиваться.

Заметное влияние на подвижность бетонной смеси оказывают вид и свойства цемента и других тонкозернистых компонентов, содержащихся в смеси (минеральных добавок, пылевидных и глинистых примесей), которые при одном и том же В/Ц создают неодинаковую вязкость теста.

Добавление в бетонную смесь небольших количеств поверхностно-активных добавок заметно повышает текучесть цементного теста, а следовательно, и удобоукладываемость бетонной смеси. Таким образом, для получения одной и той же удобоукладываемости в бетонную смесь с поверхностно-активными добавками можно вводить на 10-12% меньше воды и за счет этого повысить плотность бетона или снизить расход вяжущего.

Пластифицирующие добавки также способствуют образованию более мелких кристаллов при твердении вяжущих веществ, обеспечивающих большую однородность структуры, и следовательно, большую стойкость цементного камня. Кроме того, они замедляют ход седиментационных процессов, уменьшая количество и размеры сообщающихся капиллярных каналов в цементном тесте.

Необходимо также отметить, что ряд поверхностно-активных веществ, главным образом из числа гидрофобизующих, способствуют в процессе перемешивания вовлечению воздуха в бетонную смесь в виде мельчайших пузырьков, равномерно распределенных по всей ее массе. Это способствует увеличению объема цементного теста и раствора, благодаря чему повышаются ее удобоукладываемость. Наличие в бетоне с воздухововлекающими добавками большого количества равномерно распределенных по его объему «резервных» пор, амортизирующих давление замерзающей воды, снижает деформации расширения бетона в процессе замораживания и обеспечивает повышение его морозостойкости и долговечности.

Необходимое количество цементного теста с определенной вязкостью (иными словами, расход цемента в бетонной смеси), обеспечивающее требуемую удобоукладываемость, зависит от зернового состава заполнителей и содержания в них отмучиваемых примесей (глинистых, илистых и пылевидных).

Чем меньше размер зерен заполнителей и больше песка в смеси заполнителей, тем больше суммарная поверхность зерен заполнителей и больше требуется цементного теста для смазки их поверхностей. Аналогичное влияние оказывает и содержание отмучиваемых примесей. Чем больше пустотность песка, тем больше требуется цементного теста для заполнения пустот между отдельными зернами и смазки их поверхностей. Кроме того, чем больше объем пустот в крупном заполнителе, тем больше требуется песка для заполнения этих пустот.

Большое влияние на степень удобоукладываемости оказывают форма и характер поверхности зерен заполнителя (особенно крупного). Окатанная форма и гладкая поверхность зерен заполнителей приводят к уменьшению трения между ними, в результате чего повышается подвижность смеси, а при сохранении заданной степени подвижности уменьшается ее водопотребность. Таким образом, при одном и том же расходе цемента удобоукладываемость смесей зависит от зернового состава и качества заполнителей, а при одних и тех же заполнителях и цементе — только от количества воды. Для предупреждения расслоения бетонной смеси необходимо в допустимых пределах уменьшать количество воды в бетонной смеси, а также обеспечивать достаточное количество песка в смеси заполнителей и содержание в ней мельчайших частиц, так как они повышают водоудерживающую способность бетонных смесей. Максимальный расход воды, при котором еще сохраняется связность бетонной смеси, называют водоудерживающей способностью смеси. Она зависит в значительной степени от водоудерживающей способности вяжущего и тонкомолотых добавок. Вследствие различия в размерах и плотности отдельных составляющих бетонной смеси в последней вплоть до полного загустевания наблюдаются процессы расслоения, сопровождающиеся водоотделением.

Вначале в результате малой вязкости цементного теста зерна заполнителей начинают оседать, сближаясь друг с другом. Лишняя (не связанная) вода, как наиболее легкий компонент бетонной смеси, оттесняется вверх, уменьшая плотность наружных слоев, а затем и прочность бетона. Процесс видимого водоотделения продолжается до тех пор, пока количество оставшейся воды не достигает величины, соответствующей водоудерживающей способности бетонной смеси. Затем этот процесс резко замедляется. Дальнейшее очень медленное и незаметное на глаз оседание твердых частиц между зернами крупного заполнителя, сопровождающееся внутренним водоотделением, получило название седиментации.

Часть освобождающейся при этом воды, поднимаясь вверх, обтекает зерна заполнителей и арматурные стержни, создавая сеть очень мелких сообщающихся каналов, повышающих впоследствии водопроницаемость бетона и снижающих его прочность. Другая часть воды скапливается под зернами заполнителя в виде водных прослоек, которые уменьшают площадь контакта цементного камня с зернами заполнителя и арматурой и ухудшают сцепление между ними. Интенсивность седиментационных явлений можно уменьшить, в первую очередь, снижением количества вводимой в бетонную смесь воды.

Выбор величины удобоукладываемости бетонной смеси производят в зависимости от размеров и формы конструкции, расстояния между отдельными стержнями арматуры, а также принятых способов ее транспортирования и уплотнения. Величину осадки конуса и показатель жесткости бетонной смеси при изготовлении сборных железобетонных конструкций с применением вибрирования следует принимать в соответствии с таблицей.

Показатели удобоукладываемости бетонной смеси в зависимости от степени уплотнения
Способ уплотнения Жесткость, с Подвижность (осадка конуса), см
Виброплощадки с гармоничными колебаниями 1-3
То же, с пригрузом или вибронасадком 40-60
Наружные и внутренние вибраторы в неподвижных формах 3-5
Метод вибропоршня в неподвижных формах 30-40
Ударно-вибрационные установки с горизонтально направленными колебаниями 60-90
Вибропрокат на станах Н.Я. Козлова 60-90
Центрифугирование 4-6
Гидропрессование 20-30
В кассетных установках при толщине изделий, мм:120-16080-10060 10-15—— 4-86-1012-18
  1. Бетоноведение
  2. Технология изготовления сборных железобетонных конструкций и деталей
  3. Бетонные работы в зимних условиях
  4. Производство сборных конструкций и деталей из легких бетонов
  5. Производство сборных изделий из плотных силикатных бетонов и бетонов на бесклинкерном вяжущем
  6. Производство бетонных и железобетонных изделий на полигонах
  7. Общие правила техники безопасности и противопожарные мероприятия на строительной площадке

technology-jbi.ru

Трещиностойкость (вязкость разрушения) бетона - это... Что такое Трещиностойкость (вязкость разрушения) бетона?

Трещиностойкость (вязкость разрушения) бетона – способность бетона сопротивляться началу движения и развитию трещин при механических и других воздействиях.

[ГОСТ  29167-91]

Рубрика термина: Свойства бетона

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Свойства и состав бетона

Реологические свойства бетонной смеси
Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.Основной структурообразующей составляющей в бетонной смеси является цементное тесто.Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости.Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией
Технические свойства бетонной смеси
При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.
    Для оценки удобоукладываемости используют три показателя:
  • подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;
  • жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;
  • связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.
Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью. Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.
Удобоукладываемость бетонной смеси
Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси - подвижность и жесткость. Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков. Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.
Деформативные свойства бетона
Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия. Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины. Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины. Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости. При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:Есж = Ер = Еб. Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести. Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.
Усадка и набухание бетона
При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне. Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня. Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.
Морозостойкость бетона
Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.
Водонепроницаемость бетона
С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.
Теплофизические свойства бетона
Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий. Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя. Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°). Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами. Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения

www.betnasos.ru


Смотрите также