Для определения марки бетона прибор


Неразрушающие методы контроля и исследования бетона

Определение показателя прочности на усилие сжатия производится путем расчета по формулам и графикам, указанным в ГОСТ 22690-88, а также с использованием графиков прилагаемых производителями приборов. И в ГОСТе, и в графиках производителя указываются градуировочные зависимости между самим параметром прочности и его косвенным значением.  

Получение показаний приборами производится при исследовании самой строительной конструкции. Кроме этого, могут проводиться и испытания полученных из конструкции проб.  Это необходимо для получения показаний прочности на сложно доступных участках, а также при отрицательных температурах наружной среды. Полученные пробы заливаются бетонным раствором прочностью не менее 50% от прочности пробы. Для этого удобно использовать типовые формы согласно ГОСТ 10180-2012. Порядок размещения проб после заливки указан на рис.1.

Рис.1. 1 - проба бетона; 2 - наиболее удобная для испытания сторона пробы; 3 - раствор, в котором закреплена проба

Как уже говорилось выше, приборы для проведения неразрушающего контроля имеют собственные графики градуировочной зависимости или базовые настройки для исследований тяжелого бетона средних марок.

Для получения показаний прочности конструкций возможно использование технологий упругого отскока, ударного импульса или пластической деформации.  Получение точного значения производится с помощью градуировочной зависимости определенной для бетона, разнящегося с испытываемым своим составом, условиями застывания, возрастом или влажностью. Уточнение значений производится по методике указанной в пр. 9. ГОСТ 22690-88.

Для определения показателей прочности ультразвуковым способом необходима градуировка и корректировка данных полученных прибором согласно ГОСТ 17624 и ГОСТ 24332. В таблице 1 приведены данные расстояний между точками испытаний и количество испытаний для различных методик неразрушающего контроля.

Таблица 1

Наименование метода

Число испытаний на участке

Расстояние между местами испытаний, мм

Расстояние от края конструкции до места испытаний, мм

Толщина конструкции

Упругий отскок

5

30

50

100

Ударный импульс

10

15

50

50

Пластическая деформация

5

30

50

70

Скалывание ребра

2

200

-

170

Отрыв

1

2 диаметра диска

50

50

Отрыв со скалыванием

1

5 глубин вырыва

150

Удвоенная глубина установки анкера

 

Испытание методом упругого отскока

Методика определения прочности конструкции требует расстояния между точками приложения усилий и арматурой не менее 50 мм. Процесс испытания состоит из следующих этапов:

  • Размещение прибора на поверхности конструкции таким образом, чтобы направление усилия шло под углом 90°.
  • Относительно горизонтали прибор располагается таким же образом, как и при испытании образцов для определения градуировки. Если выбирается иная точка установки, то необходимо внесение  поправок в соответствии с рекомендациями производителя прибора.
  • Определяется косвенная характеристика.
  • Производится расчет косвенной характеристики на участке конструкции.

Определение прочности на усилие сжатия прибором "Склерометр - Schmidt тип N"

Склерометр – это прибор для замера показаний прочности бетона и бетонного раствора с посредством методики упругого отскока в соответствии с требованиями ГОСТ 22690-88. Границы замеров для данной методики составляют от 5 до 50 МПа (для марок М50 - М500).

Прибор состоит из ударного механизма и стрелки-индикатора, помещенных в корпус цилиндрической формы. Замер проводится приведением в действие ударного механизма. Величина отскока бойка прибора фиксируется стрелкой. Полученный показатель твердости при ударе переводится в показатель прочности с помощью графика, прилагаемого к склерометру. График составлен на основании сопоставления показаний разрушающих измерений на пробах кубической формы путем раздавливания в прессе и испытаний склерометром. 

Отрыв со скалыванием

Для проведений испытаний по методике отрыва со скалыванием точки закладки анкеров должны располагаться в зонах минимального напряжения от действующих на конструкцию нагрузок или минимального усилия обжатия предварительно напряженной арматуры.

Процесс замера состоит из следующих этапов:

  • Если лепестковый анкер не был заложен до бетонирования, то проводится бурение отверстия или пробивка шпура размером и глубиной соответствующим требованиям используемого прибора.
  • Анкерное устройство крепится в отверстии или шпуре.
  • Производится соединение прибора и заложенного анкера.
  • Приводится в действие прибор, начиная с минимальной нагрузки на отрыв с последующим увеличением со скоростью от 1,5 до 3 кН/с.
  • После отрыва фиксируются показатели приложенного усилия и минимальная с максимальной глубины скалывания. Точность замера глубин должна составлять не менее 1 мм.

Таким способом определяется точный показатель прочности бетона за исключением случаев:

  • если разница максимальной и минимальной величин скалывания между границами разрушения и поверхностью разнятся более чем в 2 раза;
  • разница между глубинами вырыва и заделки отличается более чем на 5%.

При указанных выше факторах применение итогов допускается только для примерной оценки.

Рекомендуется применение анкерных устройств в соответствии с приложением 2. ГОСТ 22690-88 для которых определена следующая градуировочная зависимость (пр. 5.).

ПРИЛОЖЕНИЕ

В случае применения  согласно ГОСТ 22690-88 анкерных устройств, показатель прочности бетона R, МПа определяется по формуле перевода разрушающего усилия (Р) полученного в ходе испытаний к прочности на сжатие:

R = m1 * m2 *P,

где:

m1 – коэффициент учета предельного размера большого заполнителя. Принимается равным 1 при крупности до 50 мм, 1.1 – при крупности от 50 мм.;

m2 – коэффициент перевода к прочности на сжатие, находится в зависимости от марки бетона и обстоятельств его затвердевания.

При замерах тяжелого бетона прочностью от 10 МПа и керамзитового бетона прочностью от 5 - 40 МПа показатель m2 принимается равным в соответствии с таблицей 2

Таблица 2

Условие твердения бетона

Тип анкерного устройства

Предполагаемая прочность бетона, МПа

Глубина заделки анкерного устройства, мм

Значение коэффициента m2 для бетона

тяжелого

легкого

Естественное

I

? 50

48

1,1

1,2

> 50

35

2,4

-

II

? 50

48

0,9

1,0

> 50

30

2,5

-

III

? 50

35

1,5

-

Тепловая обработка

I

? 50

48

1,3

1,2

> 50

35

2,6

-

II

? 50

48

1,1

1,0

> 50

30

2,7

-

III

? 50

35

1,8

-

 

Прибор для замера показателя прочности бетона методом отрыва со скалыванием «Оникс-ОС»

Для проведения замеров необходим участок ровной поверхности размером 200х200 мм. В центре участка пробивается или пробуривается (шлямбургом или электромеханическим инструментом) отверстие глубиной 55x10-3 м строго перпендикулярно поверхности конструкции с отклонением не более 1 градуса.

Процесс измерения состоит из следующих этапов:

  • В отверстие соответствующее вышеуказанным параметрам закладывается анкер, состоящий из конуса и трех сегментов.
  • Закручивается гайка-тяга с усилием необходимым для предотвращения проскальзывания анкера.
  • Опора устройства до упора закручивается в рабочий цилиндр.
  • Винт насоса устанавливается в верхнее положение.
  • Устройство подсоединяется к гайке-тяге.
  • Опора вкручивается до плотного соприкосновения с поверхностью конструкции.
  • Анкерное устройство вырывается путем вращения ручки насоса.
  • Определяется разрушающее усилие визуальным методом по показаниям давления на манометре. Точность должна составлять до 2,5 кгс/см2.

Очень важно чтобы при проведении испытаний не производилось проскальзывание анкерной конструкции. Итоги замера не учитываются при проскальзывании более 5х10-3 м. Не допустимо повторное использование отверстия т. к. это может привести к некорректным результатам.

Определение глубины скалывания определяется с помощью двух линеек. Первая располагается ребром на испытуемой поверхности, второй определяется глубина. 

Ультразвуковой метод определения прочности бетона

Определение прочностных показателей бетона ультразвуковым методом производится на основании существующих зависимостей между скоростью распространения звуковых волн и прочность материала. Для этого используются специальные градуировочные зависимости между скоростью ультразвука и прочностью или между временем распространения и прочностью. Выбор зависимости основан на технологии ультразвукового сканирования.

Для ультразвукового исследования используются методики сквозного или поверхностного прозвучивания. Для сборных строительных конструкций, таких как колоны, ригели, балки и т. д. применяется сквозная методика ультразвукового сканирования с направлением волн в поперечном направлении. При наличии затруднений со сквозным сканированием в силу конструктивных особенностей, а также для стеновых панелей, ребристых плоских панелей и др. плоских стройконструкций применяется поверхностное сканирование. База прозвучивания устанавливается как и на пробах при установке градуировочной зависимости.

Между поверхностями прибора и стройконструкций обеспечивается плотный акустический контакт с помощью технического вазелина и др. вязких материалов. От выбора методики прозвучивания зависит определение градуировочной зависимости. При сквозном определяется зависимость прочности от скорости прохождения звуковой волны, при поверхностном – зависимость прочности от времени её прохождения.  При поверхностном сканировании возможно использование соотношения «скорость-прочность» с применением коэффициента перехода (пр. 3.).

Время прохождения звуковой волны через материал определяется при направлении под прямым углом к уплотнению при расстоянии от 30 и более мм от края исследуемой поверхности строительной конструкции. Также обязательным является направление волны под прямым углом к заложенной в конструкции арматуре при её концентрации в зоне исследований не более 5% от объёма железобетона.  Возможно направление волны параллельно арматуре при расстоянии от арматуры не меньше чем 60% от длины базы.

 

Пульсар 1.2

Рис. 2. Внешний вид прибора Пульсар-1.2: 1 - вход приемника;
 2 - выход излучателя

В состав прибора Пульсар (рис. 2.) входит электронный блок и ультразвуковые преобразователи. Последние могут быть раздельными или объединенными в единый блок. Электронный блок оснащен клавиатурой и дисплеем, имеются разъёмы для подключения блока поверхностного сканирования или отдельных ультразвуковых преобразователей для сквозного сканирования. Прибор также оснащен USB-разъёмом для подключения к информационно-вычислительным системам. Доступ к автономным источникам питания производится через крышку в нижней части.

Функции прибора основана на замере времени преодоления  ультразвукового импульса через исследуемый материал  от излучателя к приемнику. Скорость (V) прохождения волны определяется по формуле:

V=N/t

где:

N – расстояние от излучателя до приемника;

t – время прохождения волны.

Максимально точный показатель определяется как результат обработки данных после шести измерений. Проводится от 1 до 10 измерений с определением среднего значения, а также с учетом двух коэффициентов – вариации и неоднородности.

Скорость прохождения ультразвуковой волны через исследуемый бетон зависит от показателей:

  • плотность и упругость;
  • присутствие либо отсутствие дефектов (трещин и пустот), от которых зависят прочностные свойства и качество материала.

Исходя из этого, сканируя ультразвуком элементы стройконструкций возможно получение информации о:

  • прочностных показателях;
  • монолитности структуры;
  • параметрах модулей плотности и упругости;
  • наличии/отсутствии изъянов, а также об их местонахождении и конфигурации;
  • форме А-сигнала.

Возможно проведение исследований с применением смазки и посредством сухого контакта см. рис. 3.

Рис. 3. Варианты прозвучивания

Прибор «Пульсар» производит фиксацию и визуализацию ультразвуковых импульсов, оснащен цифровыми и аналоговыми фильтрами для отсеивания помех. При  работе в режиме осциллографа есть возможность визуального наблюдения за сигналами на дисплее, оператор может самостоятельно устанавливать курсор в положение контрольной метки первого вступления, изменять увеличение измерительного тракта,  сдвигать ось времени для изучения импульсов первого вступления и огибающей.

Оформление полученных данных прочности конструкций методами неразрушающего контроля

Итоги проведенных испытаний заносятся в журнал в котором указываются:

  • название стройконструкции, номер исследуемой партии;
  • вид исследуемой прочности и ее необходимый параметр;
  • параметры бетона;
  • наименование применяемой методики исследований,  модель используемого прибора и его заводской номер;
  • средний косвенный показатель прочности и должное значение прочности материала;
  • данные об применении корректирующих коэффициентов;
  • итоговые показатели прочности;
  • данные о лицах проводившие испытания и их подпись, дата проведения испытаний.

Для определения прочности ультразвуковым методом необходимо использовать форму, указанную в пр. №8-9, ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ»

 

Ударно-импульсный метод определения прочности бетона

Установление марки бетона  посредством  технологии ударно-импульсного исследования производится прибором ИПС-МГ4.01 в соответствии с требованиями ГОСТ 22690-88.

Технические характеристики прибора ИПС-МГ4.01:

Пределы замеров прочности, МПа

3...100

Величина погрешности замера, %

± 10

Количество сохраняемых в памяти прибора показаний замеров

500

Количество индивидуальных градуировочных зависимостей, шт.

9

Количество базовых градуировочных зависимостей, шт.

1

Принцип работы ударно-импульсного оборудования заключается в проверке показателей твердости и упругости строительной конструкции  с помощью ударного импульса. Для этого проводится серия ударов (15 шт.) в одно место поверхности стройконструкции. Далее прибор производит пересчет полученных значений и определяет средний показатель. На основании полученного показателя и определяется фактическая марка бетона строительной конструкции.

Главным достоинством данной методики является его простота и возможность работы в сложных условиях. Однако следует учитывать, что полученных данных недостаточно для экспертной оценки прочности бетона.  Для этого необходимы другие методики контроля, в частности отрыв со скалыванием.

ic-lsk.ru

Основные методы определения прочности тяжелого бетона на сжатие в сборных и монолитных бетонных и железобетонных конструкциях и изделиях

Рассмотрим некоторые основные методы и приборы определения прочности бетона в конструкциях, которыми пользуются на практике. Определение прочности механическими методами неразрушающего контроля осуществляется согласно ГОСТ 22690-88 «БЕТОНЫ. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ МЕХАНИЧЕСКИМИ МЕТОДАМИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ», определения прочности ультразвуковым методом неразрушающего контроля осуществляется по ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ», определение прочности по бетонным образцам, выбуренным или выпиленным из конструкций, осуществляется по ГОСТ 28570-90 «БЕТОНЫ. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПО ОБРАЗЦАМ, ОТОБРАННЫМ ИЗ КОНСТРУКЦИЙ».

Неразрушающие методы определения прочности на сжатие бетонных конструкций основаны на косвенных характеристиках показаний приборов, основанных на методах упругого отскока, ударного импульса, пластической деформации,отрыва, скалывания ребра и отрыва со скалыванием, скорости прохождения ультразвука. Определение прочности на сжатия по образцам, отобранным из конструкций, подразумевает испытание их на прессе.

Для определения класса и марки бетона в зависимости от прочности сжатия или растяжения, можно использовать табл.6, приложения 1, ГОСТ 26633-91 «БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ»

СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ И РАСТЯЖЕНИЕ И МАРКАМИ

Таблица 6

Класс бетона по прочности

Средняя прочность бетона ()*, кгс/см2

Ближайшая марка бетона по прочности М

Отклонение ближайшей марки бетона от средней прочности класса, %,

Сжатие

В3,5

45,8

M50

+9,2

В5

65,5

M75

+14,5

В7,5

98,2

M100

+1,8

В10

131,0

M150

+14,5

B12,5

163,7

M150

-8,4

B15

196,5

M200

+1,8

В20

261,9

M250

-4,5

В22,5

294,7

M300

+1,8

В25

327,4

M350

+6,9

В27,5

360,2

M350

-2,8

В30

392,9

M400

+1,8

В35

458,4

M450

-1,8

В40

523,9

М550

+5,0

В45

589,4

M600

+1,8

B50

654,8

M700

+6,9

В55

720,3

M700

-2,8

В60

785,8

M800

+1,8

В65

851,3

M900

+5,7

В70

916,8

M900

-1,8

В75

982,3

М1000

+1,8

В80

1047,7

M1000

-4,6

____________

• Средняя прочность бетона R рассчитана при коэффициенте вариации V, равном 13,5 %, и обеспеченности- 95 % для всех видов бетона, а для массивных гидротехнических конструкций- при коэффициенте вариации V, равном 17 %, и обеспеченности- 90%.

Методы и приборы неразрушающего контроля

Для определения прочности бетона на сжатие данные показаний необходимо преобразовывать с помощью предварительно установленных градуировочных зависимостей между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы), по методикам, указанным в ГОСТ 22690-88 и по прилагаемым графикам градуировочных зависимостей к приборамб, установленным на заводе-изготовителей прибора.

Испытание прочности приборами неразрушающего контроля выполняют, непосредственно, в местах расположения конструкций, однако, также можно выполнять испытание бетона проб из конструкций. Испытание бетона в пробах рекомендуется для определения его прочности в труднодоступных зонах конструкций и в конструкциях, находящихся при отрицательной температуре. Пробу вмоноличивают в раствор, прочность которого на день испытания должна быть не менее половины прочности бетона пробы (для предотвращения разрушения пробы при испытании). Вмоноличивание проб в раствор удобно производить с использованием стандартных форм, для изготовления бетонных контрольных образцов по ГОСТ 10180-90. Расположение проб после распалубки представлено на рис.1.

Рис.1. 1 - проба бетона; 2 - наиболее удобная для испытания сторона пробы 3 - раствор, в котором закреплена проба

Обычно приборы поставляются с графиками градуировочной зависимости или с базовыми настройками для тяжелого бетона средних марок. Для обследования конструкций допускается применять методы упругого отскока, ударного импульса или пластической деформации, используя градуировочную зависимость, установленную для бетона, отличающегося от испытываемого (по составу, возрасту, условиям твердения, влажности), с уточнением ее в соответствии с методикой, приведенной в приложении 9 (ГОСТ 22690-88). Для ультразвуковых приборов требуется градуировка и корректировка согласно ГОСТ 17624, ГОСТ 24332 и методических рекомендаций МДС 62-2.01 ГУП «НИИЖБ» по контролю прочности бетона монолитных конструкций ультразвуковым методом поверхностного прозвучивания.

Согласно ГОСТ 22690-88 п. 4.4. для методов неразрушающего контроля число испытаний на одном участке, расстояние между местами испытаний на участке и от края конструкции, толщина конструкции на участке испытания должны быть не меньше значений, приведенных в табл. 3.

Таблица 3

Наименование метода

Число испытаний на участке

Расстояние между местами испытаний, мм

Расстояние от края конструкции до места испытаний, мм

Толщина конструкции

Упругий отскок

5

30

50

100

Ударный импульс

10

15

50

50

Пластическая деформация

5

30

50

70

Скалывание ребра

2

200

-

170

Отрыв

1

2 диаметра диска

50

50

Отрыв со скалыванием

1

5 глубин вырыва

150

Удвоенная глубина установки анкера

Метод упругого отскока

При испытании методом упругого отскока, расстояние, от мест проведения испытания до арматуры, должно быть, не менее 50 мм.Испытание проводят в следующей последовательности:

  • прибор располагают так, чтобы усилие прикладывалось, перпендикулярно к испытываемой поверхности, в соответствии с инструкцией по эксплуатации прибора;
  • положение прибора, при испытании конструкции относительно горизонтали, рекомендуется принимать таким же, как при испытании образцов для установления градуировочной зависимости; при другом положении, необходимо вносить поправку на показания в соответствии с инструкцией по эксплуатации прибора;
  • фиксируют значение косвенной характеристики, в соответствии с инструкцией по эксплуатации прибора;
  • вычисляют среднее значение косвенной характеристики на участке конструкции.

Определение прочности бетона прибором "Склерометр – ОМШ1"

Склерометр предназначен для определения прочности бетона и раствора методом упругого отскока по ГОСТ 22690-88. Пределы измерений для данного метода- от 5, до 50 МПа (для марок бетона от М50 до М500)

Прибор представляет собой цилиндрический корпус со шкалой, в котором размещены ударный механизм с пружинами и стрелка – индикатор. Испытания проводят путем нажатия приставленного к бетону склерометра и после удара бойка и величине его отскока, зафиксированного стрелкой-индикатором по графику, определяют прочность бетона(раствора). Продолжительность одного испытания- 20 сек.

К склерометру прилагается график, определяющий зависимость между твердостью при ударе и прочностью бетона. График, построен путем выполнения большой серии испытаний на кубиках, причем каждый кубик раздавливался в прессе непосредственно, после испытания склерометром (до ± 32%).

Отрыв со скалыванием

При испытании, методом отрыва, участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия, предварительно напряженной арматуры.

Испытания проводят в следующей последовательности:

  • если анкерное устройство не было установлено до бетонирования, то в бетоне сверлят или пробивают шпур, размер которого выбирают в соответствии с инструкцией по эксплуатации прибора в зависимости от типа анкерного устройства;
  • в шпуре закрепляют анкерное устройство на глубину, предусмотренную инструкцией по эксплуатации прибора, в зависимости от типа анкерного устройства;
  • прибор соединяют с анкерным устройством;
  • нагрузку увеличивают, со скоростью 1,5 - 3,0 кН/с;
  • фиксируют показание силоизмерителя прибора и глубину вырыва с точностью не менее 1 мм.

Если наибольший и наименьший размеры вырванной части бетона от анкерного устройства до границ разрушения по поверхности конструкции отличаются более чем в два раза, а также если глубина вырыва отличается от глубины заделки анкерных устройств более чем на 5 %, то результаты испытаний допускается учитывать только для ориентировочной оценки прочности бетона.

Еслис прибором применяются анкерные устройства в соответствии с приложением 2 ГОСТ 22690-88, то допускается использовать следующую градуировочную зависимость:

ПРИЛОЖЕНИЕ 5

Рекомендуемое

ГРАДУИРОВОЧНАЯ ЗАВИСИМОСТЬ ДЛЯ МЕТОДА ОТРЫВА СО СКАЛЫВАНИЕМ

При использовании анкерных устройств, приведенных в приложении 2, прочность бетона R, МПа можно вычислять по градуировочной зависимости по формуле

(1)

где m1 - коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырыва и принимаемый равным 1 при крупности менее 50 мм и 1,1 при крупности 50 мм и более;

m2 - коэффициент пропорциональности для перехода от усилия вырыва, кН, к прочности бетона, МПа;

Р - усилие вырыва анкерного устройства, кН.

При испытании тяжелого бетона прочностью 10 МПа и более и керамзитобетона прочностью от 5 до 40 МПа значения коэффициента пропорциональности m2 принимают по табл. 9.

Таблица 9

Условие твердения бетона

Тип анкерного устройства

Предполагаемая прочность бетона, МПа

Глубина заделки анкерного устройства, мм

Значение коэффициента m2 для бетона

тяжелого

легкого

Естественное

I

? 50

48

1,1

1,2

> 50

35

2,4

-

II

? 50

48

0,9

1,0

> 50

30

2,5

-

III

? 50

35

1,5

-

Тепловая обработка

I

? 50

48

1,3

1,2

> 50

35

2,6

-

II

? 50

48

1,1

1,0

> 50

30

2,7

-

III

? 50

35

1,8

-

Прибор для определения прочности бетона «ПИБ»

На испытываемой конструкции выбирают ровный участок размером 0,2x0,2 м и выполняют пробивку отверстия, глубиной 55x10-3 м перпендикулярно испытываемой поверхности. Допускается отклонение оси отверстия от нормали испытываемой поверхности до 1 градуса. Пробивку отверстия выполняют шлямбуром с оправкой или механизированным (электромеханическим) инструментом, обеспечивающим выполнение заданных требований.

В подготовленное отверстие устанавливается анкерное устройство, состоящее из конуса и 3-х сегментов, и накручивают гайку-тягу с усилием, предотвращающим проскальзывание анкерного устройства при испытании.

Опору прибора закручивают до упора в рабочий цилиндр. Винт поршневого насоса выкручивают в крайнее верхнее положение. Присоединяют прибор к гайке-тяге и выкручивают опору 4 до упора в поверхность испытываемого материала.

После проведения подготовительных операций производят вырыв анкерного устройства (тип 1 или 2). Вращают ручку поршневого насоса со скоростью, обеспечивающей приложение нагрузки равной 1,5 ... ЗкН/с.

В момент разрушения испытываемого материала визуально устанавливают максимальное давление по манометру. Снятие показаний по манометру следует выполнять с точностью до 2,5 кгс/см2.

При проведении испытаний необходимо следить за тем, чтобы не происходило проскальзывания анкерного устройства. Результаты испытаний не учитываются, если произошло проскальзывание анкерного устройства более 5x10-3 м. Повторное испытание данного отверстия не допускается из-за возможности получения заниженных результатов. После вырыва анкерного устройства необходимо уточнить глубину разрушения бетона, используя для ее определения две линейки, одну из которых устанавливают ребром на поверхность бетона в зоне испытаний, другой - замеряют глубину.

Ультразвуковой метод

Ультразвуковой метод основан на связи между скоростью распространения ультразвуковых колебаний в бетоне и его прочностью. Прочность бетона в конструкциях определяют по экспериментально установленным градуировочным зависимостям "скорость распространения ультразвука - прочность бетона" или "время распространения ультразвука - прочность бетона" в зависимости от способа прозвучивания.

Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. Сборные линейные конструкции (балки, ригели, колонны и др.) испытывают, как правило, способом сквозного прозвучивания в поперечном направлении. Изделия, конструктивные особенности которых затрудняют осуществление сквозного прозвучивания, а также плоские конструкции (плоские, ребристые и многопустотные панели перекрытия, стеновые панели и т. д.) испытывают способом поверхностного прозвучивания. При этом база прозвучивания при измерениях на конструкциях должна быть такой же, как на образцах при установлении градуировочной зависимости.

Между бетоном и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надежный акустический контакт, для чего применяют вязкие контактные материалы (солидол по ГОСТ 4366, технический вазелин по ГОСТ 5774 и др.).

Градуировочную зависимость "скорость - прочность" устанавливают при испытании конструкций способом сквозного прозвучивания. Градуировочную зависимость "время - прочность" устанавливают при испытании конструкций способом поверхностного прозвучивания.

Допускается при испытании конструкций способом поверхностного прозвучивания использовать градуировочную зависимость "скорость - прочность" с учетом коэффициента перехода, определяемого в соответствии с приложением 3.

Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном уплотнению бетона. Расстояние от края конструкции до места установки ультразвуковых преобразователей должно быть не менее 30 мм. Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном направлению рабочей арматуры. Концентрация арматуры вдоль выбранной линии прозвучивания не должна превышать 5 %. Допускается прозвучивание вдоль линии, расположенной параллельно рабочей арматуре, если расстояние от этой линии до арматуры составляет не менее 0,6 длины базы.

Пульсар 1.2.

Рис. 2. Внешний вид прибораПульсар-1.2: 1 - вход приемника;2 - выход излучателя

Прибор состоит из электронного блока (см. рис. 3.2) и ультразвуковых преобразователей - раздельных или объединенных в датчик поверхностного прозвучивания. На лицевой панели электронного блока расположены: 12-ти клавишная клавиатура и графический дисплей. В верхней торцевой части корпуса установлены разъёмы для подключения датчика поверхностного прозвучивания или отдельных УЗ преобразователей для сквозного прозвучивания. На правой торцевой части прибора расположен разъем USB интерфейса. Доступ к аккумуляторам осуществляется через крышку батарейного отсека на нижней стенке корпуса.

Работа прибора основана на измерении времени прохождения ультразвукового импульса в материале изделия от излучателя к приемнику. Скорость ультразвука вычисляется делением расстояния между излучателем и приемником на измеренное время. Для повышения достоверности в каждом измерительном цикле автоматически выполняется 6 измерений и результат формируется путем их статистической обработки с отбраковкой выбросов. Оператор выполняет серию измерений (от 1 до 10 измерений по его выбору), которая также подвергается математической обработке с определением среднего значения, коэффициента вариации, коэффициента неоднородности и с отбраковкой выбросов.

Скорость распространения ультразвуковой волны в материале зависит от его плотности и упругости, от наличия дефектов (трещин и пустот), определяющих прочность и качество. Следовательно, прозвучивая элементы изделий, конструкций и сооружений можно получать информацию о:

  • прочности и однородности;
  • модуле упругости и плотности;
  • наличии дефектов и их локализации.
  • форме А-сигнала

Возможны варианты прозвучивания со смазкой и сухим контактом (протекторы, конусные насадки), см. рис. 3.1.

Рис. 3. Варианты прозвучивания

Прибор осуществляет запись и визуализацию принимаемых УЗК, имеет встроенные цифровые и аналоговые фильтры, улучшающие соотношение «сигнал-помеха». Режим осциллографа позволяет просматривать сигналы на дисплее (в задаваемом масштабах времени и усиления), вручную устанавливать курсор в положение контрольной метки первого вступления. Пользователь имеет возможность вручную изменять усиление измерительного тракта и смещать ось времени для просмотра и анализа сигналов первого вступления и огибающей.

Оформление результатов для методов определения прочности неразрушающего контроля

Результаты испытаний прочности бетона заносят в журнал, в котором должно быть указано:

  • наименование конструкции, номер партии;
  • вид контролируемой прочности и ее требуемое значение;
  • вид бетона;
  • наименование неразрушающего метода, тип прибора и его заводской номер;
  • среднее значение косвенной характеристики прочности и соответствующее значение прочности бетона;
  • сведения об использовании поправочных коэффициентов;
  • результаты оценки прочности бетона;
  • фамилия и подпись лица, проводившего испытание, дата испытания.

Для ультразвукового метода определения прочности нужно воспользоваться формой журнала, установленной в приложениях №8-9, ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ»

sklerometr.ru

Прибор для бетона, определение качества бетона в домашних условиях

Бетон используется практически в любой строительной сфере, поскольку гарантирует высокую надёжность и значительную долговечность. При правильном подборе состава, срок эксплуатации составляет несколько десятилетий. Не стоит забывать о том, что конструкции монолитного типа устойчивы к воздействиям внешних факторов. Такое качество способствует возможности применения под открытым небом. Дополнительно, требуется уделить внимание разумной цене, что снижает стоимость проведения строительных мероприятий.

Когда используется бетон, возникает необходимость соответствия его реальных качеств и заданных характеристик. Далеко не всегда приобретаемый состав обладает подобным качеством. Если это не обеспечить, то снижается срок эксплуатации, а также возникают другие проблемы. Именно по этой причине, требуется прибор для бетона, способный определить его качественные параметры. На данный момент, существует различное специализированное оборудование, а также методики его применения. Они позволяют установить такие параметры, как морозоустойчивость, водонепроницаемость, подвижность, а также многое другие. Если рассматривать самую важную характеристику, то её является устойчивость материала к воздействию нагрузки – прочность на сжатие. Она определяет, какое давление может выдержать объект монолитного типа из заданного состава до того, как произойдёт его необратимое разрушение. Прибор для бетона, в данном случае, представляет собой специальное гидравлическое оборудование. Оно имеет специальный постамент, на который производится установка стандартизированного кубика. Он создан по эталонной технологии, что гарантирует точность и объективность получаемого результата.

Прибор для бетона имеет специальный отсек и закрывающуюся дверцу, чтобы осколки не смогли повредить его структуру, а также вылететь за пределы зоны испытания. Гидравлические элементы производят сдавливание сверху и снизу. Это позволяет добиться увеличения давления вплоть до определенного значения. Критический момент наступает, когда происходит деформация эталонного кубика, которая не может быть предотвращена. Таким образом, именно это значение нагрузки и определяет прочность состава. Следует сказать, что показатель марки считается основной характеристикой, обеспечивающей возможность установления всех иных параметров или их приблизительных значений.

Довольно часто возникает необходимость провести определение качества бетона в домашних условиях. Это вовсе не такая простая задача, как может показаться с первого взгляда. В первую очередь, рекомендуется осуществить ознакомление с сертификатами качества. Они должны идти вместе с любым товарным составом. Доставляемым на место миксером или любым другим типом специализированной техники. Как показывает практика, определение качества бетона в домашних условиях без разрушения уже застывшего образца является сложной задачей. Дополнительно, результат не может гарантировать верного результата. Определение качества бетона в домашних условиях будет только предположительным и не говорящим об объективности. Если состав ещё жидкий, то можно по его консистенции и удобоукладываемости сделать некоторые выводы. Следует сказать, что это доступно только в том случае, если присутствует значительный строительный опыт, а также многолетняя практика создания смесей.

Установление качества бетона в обычных условиях подразумевает методики, не требующие разрушения конструкции. Для этого принято использовать специальное оборудование, функционирующее по различным признакам. В первую очередь, следует задуматься над применением ультразвуковых методик. При этом, они больше подходят для установления не качества конструкции, а определения внутри неё скрытых дефектов и схожих проблем. Другим вариантом является электронное измерение удара, когда на поверхность бросается металлический шарик. Такая методика основывается на установлении времени, в течение которого обратный сигнал приходит на датчик и возможных задержек на его пути. 

dombeton.ru

методы, аппаратура, ГОСТ. Контроль и оценка прочности бетона

При проверке строительных конструкций определение прочности бетона осуществляется для выяснения их состояния на текущий момент времени. Фактические показатели после начала эксплуатации обычно не совпадают с проектными параметрами. На них непосредственное влияние оказывают деформационные нагрузки и внешние факторы. В процессе диагностики могут использоваться разные методы.

Базовые термины и определения

Прежде чем рассмотреть основные способы контроля и оценки прочности бетона, рекомендуется ознакомиться с некоторыми понятиями, чтобы в дальнейшем не возникало вопросов. Все термины и определения, необходимые для более четкого понимания темы, представлены ниже.

  • Бетон – строительный материал, полученный искусственным путем в результате твердения раствора с вяжущим веществом и наполнителями. В состав смеси для достижения наилучших эксплуатационных качеств могут вводиться дополнительные добавки.
  • Прочность – свойство затвердевшего материала воспринимать нагрузки механического характера, не разрушаясь при этом. При эксплуатации конструкции подвергаются сжатию и растяжению, а также другим воздействиям.
  • Предел прочности – самое высокое значение оказываемой механической нагрузки, приведенное непосредственно к определенной площади сечения, после достижения которой происходит частичное или полное разрушение материала.
  • Разрушающие методы определения прочности бетона – контроль перечисленных параметров путем взятия контрольных образцов, отобранных из тестируемой конструкции по пунктам ГОСТ 28570.

  • Неразрушающий контроль – проверка надежности базовых свойств отдельных элементов конструкции без проведения демонтажных работ. При этом способе нет необходимости выводить объект из эксплуатации.
  • Участок испытания конструкции – определенная доля объема, длины или площади ограниченных размеров, для которой проводятся испытания на прочностные характеристики.

Для чего производится контроль?

При строительстве жилых зданий, промышленных или коммерческих объектов определение прочности бетона позволяет избежать многих негативных последствий. Материал используется на различных этапах возведения строений в различных целях. В зависимости от типа конструкций, требования к смесям могут существенно меняться. К примеру, для заливки фундаментов и стен применяются разные марки бетона, определяющиеся прочностными характеристиками.

Использование смесей, не отвечающих предъявляющимся требованиям, может приводить к образованию трещин, ухудшению эксплуатационных качеств и преждевременному разрушению конструкции. Исследования часто необходимы для определения возможности дальнейшего использования здания в каких-либо целях.

Таблица прочности бетона: соответствие классов и марок

Строительные растворы подразделяются на категории, при которых учитываются различные параметры. Обычно разбивается прочность бетона в МПа по классам, обозначающимся большой буквой с цифрой. Такая маркировка в профессиональной среде считается наиболее удобной. К примеру, раствор B25 будет иметь прочность 25 МПа.

Что касается марки бетона, то она выражает приблизительное значение в килограммах на квадратный сантиметр. Обозначение производится по тому же принципу. Однако при соотношении показателей нормативный коэффициент вариации может составлять 13,5 процентов.

Для примера предлагается ознакомиться со специальной таблицей прочности бетона, в которой приводятся соответствия между классами и марками смесей.

Класс

Марка

Прочность, кгс/кв. м

B5

M75

65

B10

M150

131

B15

M200

196

B25

M350

327

B35

M450

458

Что оказывает влияние на прочность?

При протекании химических процессов происходит застывание бетонной смеси. Вода вступает во взаимодействие с вяжущим веществом. Под влиянием некоторых факторов скорость протекания химической реакции может ускоряться или затормаживаться. От них же в некоторой степени будет зависеть конечная прочность бетона.

К важным факторам следует отнести:

  • изначальную активность вяжущего вещества;
  • количество воды в составе;
  • уровень уплотнения;
  • температурный режим и влажность;
  • качество смешивания компонентов.

Немаловажную роль играет качество используемых наполнителей. Компоненты с мелкой фракцией и глинистыми веществами приводят к снижению прочности. Крупные частицы имеют лучшую адгезию с вяжущим веществом. Их применение положительно сказывается на показателях прочности.

Классификация методов исследования

При определении прочности бетона в строительных конструкциях приходится решать непростые технические задачи. Развитие теоретических и практических исследований в сфере контроля качества строительных составов привело к появлению многочисленных методов. Каждый из них имеет конкретную сферу применения, а также свои плюсы и минусы.

Если брать способ воздействия непосредственно на испытываемую конструкцию, то можно выделить три основных метода.

  1. Разрушающий. После проведения контрольных операций образец использовать по назначению невозможно.
  2. Неразрушающий. Осуществление испытаний не сказывается на эксплуатационных способностях конструкции.
  3. Локально разрушающий. После проведения специальных мероприятий требуется ремонт сооружения.

Обследование должно производиться только после детального ознакомления с проектно-технической документацией. Получив определенные сведения об используемом составе и технологии изготовления конструкции, можно приступать к работам по определению прочностных качеств.

От каких факторов зависит выбор метода?

Чтобы узнать предел прочности бетона, необходимо сначала определиться с методикой исследования. На ее выбор влияние оказываются следующие факторы:

  • состояние строительной смеси;
  • доступность тестируемых участков;
  • количество собранной информации;
  • наличие или отсутствие разнородных слоев в конструкции.

Несмотря на многообразие методик, результаты, полученные разрушающими способами, являются наиболее достоверными, так как при испытаниях измеряется искомый показатель – усилие, прилагаемое при сжатии. Кроме того, тщательно изучается образец, взятый непосредственно из тела конструкции, а не верхняя часть.

Разрушающие методы контроля

Сущность способов заключается в исследовании образцов, полученных выбуриванием или выпиливанием из готовой конструкции. На них оказывается статическая нагрузка с постепенным увеличением скорости роста. В результате удается рассчитать напряжения при приложенных усилиях.

Габариты и форма взятых образцов зависят от типа проводимых испытаний. Они должны отвечать требованиям ГОСТ 10180.

Метод исследования

Форма испытываемых образцов

Размеры элементов в миллиметрах

Определение показателей прочности бетона на растяжение и сжатие

Куб

Длина ребер фигуры может составлять 100, 150, 200 или 300 мм

Цилиндр

Для исследования берется образец высотой в два диаметра, один из которых может иметь те же размеры, что и ребра куба.

Проверка прочностных показателей на осевое растяжение

Призма, имеющая квадратное сечение

Размеры испытываемого элемента могут быть следующими: 200 х 200 х 800, 100 х 100 х 400 или 200 х 200 х 800 мм.

Цилиндр

При проведении исследований берутся образцы тех же размеров, что и в случае, указанном выше.

Определение прочностных качеств на растяжение при изгибе и осуществлении раскалывания

Призма, имеющая квадратное сечение

В ходе работ берутся образцы следующих размеров: 200 х 200 х 800, 100 х 100 х 400 и 150 х 150 х 600 мм.

Для определения прочности бетона собираются его пробы посредством выбуривания или выпиливания отдельных частей.

  1. Места назначаются после предварительного осмотра. Участок испытания конструкции должен находиться на некотором удалении от стыков и краев.
  2. Оставшиеся канавки после взятия образцов замуровываются мелкозернистым бетоном.
  3. В процессе выбуривания или выпиливания применяются пилы с алмазными дисками, специальные коронки или подходящий твердосплавный инструмент.
  4. На участках взятия проб не должно быть арматуры. Если такой вариант не может быть осуществлен, то берется часть бетона с металлическими прутьями сечением до 16 мм для образцов с размерами более 10 см.
  5. Наличие арматуры недопустимо при исследованиях на осевое растяжение и сжатие. Это негативно сказывается на конечных показателях. Кроме того, прутьев не должно быть в пробах, имеющих форму призмы, при испытаниях на растяжение при изгибе.
  6. Места извлечения образцов, их количество, а также размеры определяются правилами контроля прочности бетона с учетом пунктов ГОСТ 18105.

Каждая взятая заготовка маркируется и описывается в протоколе. После этого она подвергается тщательной подготовке для дальнейших испытаний. Все образцы должны иметь специальную схему, в которой четко отражена ориентация частей непосредственно в конструкции.

Неразрушающий контроль механическим способом

В основе данного метода лежат градуировочные зависимости. Они базируются на косвенных характеристиках. К таковым относятся:

  • показатели отскока бойка непосредственно от бетонной поверхности;
  • параметры энергии ударного импульса;
  • размеры отпечатков, оставшихся в результате механического воздействия;
  • напряжение, приводящее к местному разрушению при отрыве;
  • усилие при осуществлении разрыва на ребре конструкции.

В правилах контроля прочности бетона предлагается применять определенный набор измерительных приспособлений при проведении испытаний: штангенциркуль, угловой масштаб, часовой индикатор и некоторые другие инструменты. Количество проводимых испытаний и расстояния между рабочими участками приводятся в таблице.

Применяемый метод исследований

Число проводимых мероприятий

Расстояние в миллиметрах

От краев конструкции

Между рабочими зонами

Скалывание ребра

2

-

200

Пластическая деформация

5

50

30

Отрыв

1

50

Двойной диаметр диска

Упругий отскок

5

50

30

Ударный импульс

10

50

15

Отрыв со скалыванием

1

150

Глубина выемки, умноженная на 5

Вышеуказанные мероприятия должны производиться на участке бетонной конструкции общей площадью 100-600 кв. см. После осуществления основных испытаний данные заносятся в специальный журнал для установки градуировочных зависимостей между косвенными характеристиками и прочностными показателями затвердевшего раствора.

Неразрушающий контроль физическими методами воздействия

К категории таких способов относятся технологии акустического воздействия и проникающих излучений. Они предоставляют возможность судить о качественных характеристиках конструкции по внутренней структуре, так как измеряется скорость распространения волн упругих колебаний непосредственно по испытываемому материалу.

Чаще всего используется прибор для определения прочности бетона ультразвуковым методом. Он позволяет снять показания без оказания механического воздействия на конструкцию. С его помощью измеряется скорость прохождения ультразвуковых волн через слой бетона. При сквозном исследовании датчики могут располагаться с двух сторона, а при поверхностном – с одной.

Контроль с использованием ультразвука считается наиболее информативным и достаточно простым. Он позволяет не только оценить прочностные параметры, но и найти возможные дефекты внутри слоев. Используемый прибор имеет несколько режимов работы, которые представлены в таблице.

Режим

Описание

Калибровка

Позволяет приспособить прибор к характеристикам бетона. Измеряются поперечные волны внутри затвердевшей смеси, определяются важные параметры, необходимые для снятия качественных образов структуры массива.

Обзор

Дает возможность произвести быстрое изучение внутреннего строения конструкции. Измеряется толщина, обнаруживаются дефекты или предметы, находящиеся в массиве (арматура, трубы, кабели).

Сбор

Собираются данные об ультразвуковых исследованиях. Запись производится в различных положениях. Сканирование осуществляется в виде полосы (или особой ленты).

Просмотр

Применяется для анализа данных на длительном отрезке времени. На экране в данном случае присутствуют все типы изображений. Они могут отображаться по очереди или сразу.

Ультразвуковой измеритель прочности бетона позволяет проводить многочисленные испытания многократно, осуществляя постоянный контроль изменения параметров. Недостатком считается погрешность при соотношении акустических характеристик с базовыми параметрами.

О затвердевании строительных смесей на основе цемента

Существует прямая зависимость прочности бетона от температуры в процессе застывания. Нормальными условиями принято считать режим от 15 до 20 градусов. С понижением температуры замедляется нарастание прочности. При заморозках затвердевание будет происходить, если в состав были добавлены специальные присадки.

Повышение температуры ускоряет процесс застывания, особенно если влажность является достаточной. Однако нагрев более 85 градусов противопоказан, так как сложно защитить бетонную смесь от пересыхания. Процесс затвердевания можно стимулировать двумя способами. Первый из них заключается в использовании внутреннего тепла, а второй – внешнего.

Об анализе возможных проблем при определении прочности

Используя ультразвуковой измеритель прочности бетона, необходимо особое внимание уделить установлению градуировочных зависимостей. Без них полученные данные не могут считаться доказательными. Для получения более точных результатов придется учесть количество и состав наполнителя, уровень уплотнения, расход цемента и многое другое.

fb.ru

Для определения марки бетона прибор

Прибор для измерения прочности бетона – основные виды. Механический и ультразвуковой методы применения

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для этого используются различные методы и виды оборудования, именно их мы и рассмотрим в рамках данного обзора.

На фото — благодаря появлению высокотехнологичных приборов определение прочности в наши дни стало намного проще

Основные способы проверки бетона

Стоит отметить, что оборудование данной группы может использоваться для проверки прочности, как бетона, так и кирпича. Под прочностью понимается способность материала противостоять разрушению под действием внутреннего напряжения и различным внешним факторам, чем стойкость выше, тем надежнее и долговечнее конструкция.

Оборудование для проверки прочности может быть и очень большим

Провести проверку можно посредством двух способов:

  • Разрушающий: суть этого метода заключается в том, что в специальном прессе раздавливаются предварительно подготовленные заготовки. Это могут быть кубы, которые отливаются из контролируемого бетона или керны – фрагменты цилиндрической формы, получить которые помогает алмазное бурение отверстий в бетоне и изъятие фрагмента.

Чтобы получить керн, необходимо проводить бурение бетона

  • Второй вариант – использовать прибор для определения прочности бетона неразрушающим методом. Такое оборудование измеряет физические величины, оказывающие прямое влияние на прочность бетона, и пересчитывает их, выдавая нужные показатели. Естественно, чем качественнее оборудование, тем меньше погрешность и выше точность исследований.

Виды приборов

При проведении измерительных мероприятий чаще всего используется один из двух основных типов измерительного оборудования. Естественно, проведение работ своими руками подразумевает именно этот вариант, так как цена специального пресса очень велика, да и нет смысла держать его, если у вас нет специальной испытательной лаборатории по оказанию услуг по измерению прочности и других показателей.

Определение прочности механическим методом

Если проводится неразрушающий контроль (НК) механическим способом, то главный нормативный акт, которым обязательно следует руководствоваться, это ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами НК». В данном документе изложены правила испытаний как тяжелых, так и легких бетонов с предельными значениями прочности, не выходящими за рамки диапазона от 5 до 100 Мпа.

В данную группу приспособлений входит несколько основных разновидностей оборудования, которое отличается по способу определения тех или иных косвенных характеристик.

Это могут быть следующие показатели:

  • Энергия удара специальным бойком.
  • Значение отскока бойка от прижатого к стене ударника.
  • Размер оставленного следа от удара.
  • Показатель усилия, необходимого для разрушения небольшого участка на ребрах конструкции или при вырыве закрепленного анкерного болта.

Прибор может состоять из бойка и блока управления, или все может располагаться в бойке (самые современные варианты реализуются именно так)

Особенности проведения измерений с помощью того или иного метода зависят от множества факторов, поэтому инструкция по эксплуатации прибора обязательна к изучению. Рассмотрим самый популярный вариант проведения испытаний – метод упругого отскока.

Технология выглядит следующим образом:

  • Измерительный узел должен располагаться перпендикулярно поверхность, чем больше перекос, тем больше погрешность измерений, не стоит забывать об этом.

Сила должна прилагаться перпендикулярно, это гарантирует точность измерений

  • Проверку нужно провести на разных участках поверхности, для корректности измерений следует иметь как минимум 5 значений и определить среднее арифметическое.
  • С помощью специальной формулы высчитывается показатель прочности той или иной конструкции. На самом деле, все достаточно просто и, следуя рекомендациям и требованиям инструкции, можно проводить качественные измерения, даже не имея соответствующей практики.

Современные приборы очень компактны и удобны в работе

Важно! Чтобы показатели были точными и корректными, не стоит забывать, что минимальная толщина бетонной конструкции не должна быть менее 100 мм.

Использование ультразвукового метода

При использовании данного способа расчета показателей прочности бетона или кирпича все требования к измерениям и порядок их проведения определяет ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Стоит отметить, что с помощью такого метода можно проводить измерения практически всех видов бетона, это делает данный вариант максимально универсальным.

Ультразвуковой прибор для определения прочности бетона отличается простотой и удобством работы

С помощью ультразвука можно измерять как показатели готовых конструкций, так и материала, который еще не набрал оптимальные показатели прочности. То есть, можно отслеживать процесс отвердения материала.

Особенности данного вида измерений заключаются в следующем:

  • Сам метод основан на физической взаимосвязи значения прочности бетона и скорости распространения по нему звуковых колебаний. Эта взаимосвязь может выражаться в виде формулы, графика или таблицы, специалисты называют ее «градуировочная характеристика». Этот показатель определяется отдельно для каждого объекта измерений, в процессе проверки используется поверхностное либо сквозное прозвучивание.
  • По результатам проверки и подбора градуировочных характеристик проводятся основные испытательные мероприятия, причем проводиться они должны тем же способом, что и проверочные.
  • На основе полученных показателей и определяется фактическая прочность того или иного участка бетонной конструкции.

Важно! Чем точнее будет определена градуировочная характеристика, тем выше будет точность окончательных результатов.

Проверка может понадобиться в самых различных случаях: от определения надежности конструкции до расчета динамики застывания бетонного материала. Если будет осуществляться резка железобетона алмазными кругами,также желательно измерить прочность и подобрать оптимальный тип круга по бетону.

Приборы могут иметь самую различную конфигурацию, важно, чтобы точность измерений была как можно выше

Вывод

В некоторых случаях от правильности измерений зависит очень многое, особенно если дело касается ремонтных работ и мероприятий по укреплению конструкции. Только корректные данные гарантируют, что будет выбран нужный вариант дальнейших действий. Видео в этой статье поможет разобраться в некоторых особенностях использования измерительных приборов.

загрузка...

masterabetona.ru

Приборы измерения прочности бетона

Определить, насколько эффективно бетонная конструкция будет противостоять внешним нагрузкам, позволяют специальные приборы. С их помощью можно узнать величину прочностных показателей бетона разными способами.

Назначение

Измеритель прочности бетона используется для расчета предельных нагрузок, которые способен выдержать бетон или кирпич в определенных условиях. Для установления прочностного параметра применяются два метода:

  1. Разрушающий способ позволяет определить величину прочности путем раздавливания образцов в форме кубика, полученных из поверхности бетона, в специальном прессе.
  2. Неразрушающий метод позволяет получить этот параметр без механического разрушения.

Второй способ более популярен. Для этого применяются приборы ударного импульса, упругого отскока, ультразвуковые и с частичным разрушением.

Виды и характеристики

Портативные измерители прочности бетона позволяют точно определить соответствующий параметр с минимальными затратами времени. Существует несколько разновидностей таких механизмов, отличающихся по принципу действия. Приборы наделены определенным набором функций.

Электронные
Электронный склерометр (измеритель прочности бетона) ОНИКС-2.5.

Приборы для электронного измерения прочности отличаются:

  • высокой точностью;
  • способностью зафиксировать до 5 тысяч измерений одновременно;
  • возможностью получения сведений по заранее введенным параметрам;
  • наличием функции передачи информации на компьютер;
  • способностью сортировки данных по заданным характеристикам.

Классифицируются электронные механизмы по принципу воздействия. Основанные на отрыве упругого типа предназначены для измерения прочности образцов толщиной более 10 см. Измерители параметров по импульсу удара отличается низким процентом погрешности — 7%. Двухпараметрическая модификация передает измерения и от удара, и от отрыва. Двухцилиндровые гидропрессы компонуются специальными измерительными опорами, куда вмонтирована вся электронная система. Электронным измерителем вымеряется отрыв со скалыванием.

Склерометры

Устройства для экспресс-анализа измеряют удар стального бойка о бетонную поверхность по импульсу или по величине. Склерометр используется при нехватке сведений о поверхностной прочности, для проведения измерений в условиях, неподходящих для применения других методов. Отличаются агрегаты простотой эксплуатации, высокой скоростью определения по стандартным градуировочным зависимостям. При измерении учитывается вид наполнителя, возраст изделия и условия затвердения камня. Возможна ручная настройка направления удара.

Механические

Механические процессы для измерения прочностных характеристик применяются к легким и тяжелым классам бетона. Предельные показатели устройств, работающих на этом методе, равны 5—100 МПа. Замеры осуществляются на основе показаний, полученных от:

  • величины отскока бойка ударника;
  • энергии удара;
  • размеров полученного следа от бойка.

Предел погрешности механических приборов прочности составляет 15%.

Ультразвуковые

Механизмы ультразвукового действия определяют прочностные показатели при затвердении бетона, отпускную, передаточную прочность. Процесс измерения производится по скорости распределения звуковых колебаний по поверхности бетона, определяемой способами прозвучивания сквозного — датчики располагаются с двух сторон, и плоскостного — датчики находятся с одного бока. Ультразвуковыми устройствами определяют прочность в приповерхностных слоях и в теле бетона. Также их используют при дефектоскопии, для контроля качества цементирования и определения глубины бетонирования. Скорость распространения ультразвука — 4500 м/с. Недостатком является погрешность при пересчете акустических характеристик в прочностные.

Примеры производителей

Российская компания СКБ Стройприбор — популярный производитель измерителей прочности на строительном рынке. Предлагается широкий ассортимент от торговых марок Beton Pro, ADA.

Ипс-мг4.03

Ипс-мг4.03 используется при определении прочностных показателей тяжелого и мелкозернистого бетона, керамзитобетона, шлакопемзобетона, бетонных растворов, кирпича. Принцип действия основан на получении данных от ударного импульса. С учетом условий твердения и возраста материала измеритель Ипс-мг4.03 определяет:

  • физико-механические параметры образца, включая прочностные показатели, твердость, пластичность;
  • величину неоднородности;
  • зоны низкого уплотнения.

Особенности Ипс-мг4.03:

  • возможность ввода коэффициента совпадения для сравнения с градуировочными характеристиками;
  • наличие выбора типа образца;
  • опция определения класса бетона;
  • возможность исключения ошибки измерения;
  • наличие выходов для подключения к компьютеру;
  • объемная память, вмещающая 999 участков и 15 тысяч результатов;
  • возможность ввода градуировочных характеристик вручную;
  • регулировка 100 настроек по выбору типа наполнителя, материала и возраста бетона.
Beton Pro Condtrol

Измеритель прочности бетона beton pro condtrol подходит для оперативного анализа на месте и в целях лабораторного контроля прочностных колебаний, однородности цементного состава, бетонных растворов, кирпича. Принцип действия основан на измерении ударного импульса. Преимущества работы:

  • получение высокоточных величин;
  • удобство эксплуатации;
  • повышенная энергия удара;
  • автозавод ударного механизма;
  • большое количество настроек;
  • наглядность вывода информации;
  • на результат практически не влияют возраст, состав, условия твердения бетона.

В Beto Pro CONDTROL имеется 100 связанных с прочностью градуировочных зависимостей, пять направлений удара, функция присвоения признака исследуемому образцу, память на 5 тысяч измерений с возможностью сортировки и отбраковки полученных величин, выход для подключения к компьютеру, опция постройки диаграммы среднеквадратического отклонения и вариативного коэффициента.

ОНИКС-ОС

Прибор используется для определения прочностных показателей и величин однородности легкого бетона и кирпича. Относится к классу электронных склерометров. Оникс-ОС отличается такими преимуществами:

  • двухпараметрический метод контроля прочностных показателей по ударному импульсу и отскоку, что позволяет получить максимально точные результаты;
  • легкость, компактность и эргономичность;
  • максимальная точность измерительного тракта.

В устройстве реализованы основные градуировочные характеристики с возможностью уточнения на основании коэффициента совпадения. Имеется возможность настройки требуемых параметров измерения и названия образцов. Измерения проводятся с учетом состава, условий упрочнения, карбонизации и возраста бетона. В памяти ОНИКС-ОС сохраняются все результаты измерений, сведения об образцах, вариативные коэффициенты, время и дата исследований. При этом необходимые данные с диаграммами быстро выводятся на подсвечиваемый экран. Оникс-ОС имеет опции автоотключения устройства, автоудаления устаревших данных, определения класса бетона.

NOVOTEST ИПСМ-У Т Д

Ультразвуковой агрегат производит:

  • контроль прочностных параметров бетонов, кирпича и композиционных конструкций;
  • измерение глубины пор, трещин, дефектов в бетоне;
  • контроль плотности с упругостью углеграфитов и стеклопластика;
  • определение возраста бетона.

Особенностью является возможность ручной обработки результатов, отсутствие влияния внешних факторов на точность измерения, сверхчувствительный датчик прозвучивания.

Заключение

Точность измерения прочности современными устройствами позволяет качественно производить ремонтные, строительные работы, мероприятия по укреплению бетонных конструкций.

Полученные данные с измерителей гарантируют правильность выбора дальнейших действий, определения необходимости прибавления бетону прочностных характеристик, что существенно облегчает работу строителей.

kladembeton.ru

Определение прочности бетона и необходимые для этого измерительные приборы

Бетон считается одним из самых важных строительных компонентов. Его основным показателем качества является прочность, так называемая способность противостоять разрушению, созданному силой внешнего влияния. Потому, чтобы понять, какого качества произведенный продукт, необходимо провести испытание бетона на прочность. Это испытание проводится в лабораторных условиях. Для его осуществления нужна соответствующая проба. Как правило, такой пробой выступает залитый бетонный куб с размерами 10*10*10 сантиметров.

Основные методики определения прочности бетона

Измерение прочности бетона дает возможность определить, насколько эффективно конструкция из данного состава сможет противостоять факторам давления, поступающим извне. Чем большим будет этот показатель, тем значительнее нагрузки сможет выдерживать конструкция из испытываемого материала. Есть несколько способов для увеличения значения показателя качества.

Первый способ – увеличение процентного отношения цемента в составе. Только главное здесь – не перестараться, иначе можно достичь обратного эффекта – избыточное количество цемента снижает надежность состава в целом. Второй способ – правильный выбор материала для заполнителя. То есть, заполнитель лучше выбирать крупный и качественный, например, гранит или щебень.

Третий способ известен всем и вполне логичен для повышения показателей, когда осуществляется определение прочности бетона - это армирование. Последний, четвертый способ, скорее можно назвать эксплуатационным, потому как рассчитан он на правильный уход за уложенной смесью. Главными здесь являются мероприятия, направленные на уплотнение. Так, к примеру, можно провести вибрирование, чтобы добиться большей монолитности массы. Но стоит упомянуть об одном нюансе – слишком длительное воздействие вибрации может привести к расслоению массы.

Методы определения прочности бетона бывают двух видов. В первом случае используется разрушающий способ, а во втором – неразрушающий. Суть разрушающего метода анализа состоит в том, чтобы раздавливать предварительно отобранные образцы в спецпрессе. Образцами называют кубики определенного размера, хотя это могут быть также цилиндры, по иному называемые кернами, которые выбурены из поверхности. Так получают непосредственное значение показателя.

Второй способ - неразрушающие методы контроля прочности бетона. Здесь не используется способ разрушения механического вида. Контроль можно осуществлять также, если измерить и пересчитать физвеличины, которые ответственны за качественные показатели.

Наиболее распространено на практике определение прочности бетона неразрушающим методом. Такой метод позволяет контролировать характеристики и свойства объекта, при которых не нарушится пригодность объекта к использованию. То есть, объект останется пригодным к дальнейшей эксплуатации.

Одним из видов исследований выступает ультразвуковой метод определения прочности бетона. Он заключается в том, что специальным прибором измеряется время прохождения ультразвукового импульса от излучателя к приемнику. Принцип метода – определение наличия функциональной связи между скоростью, с какой распространяются ультразвуковые колебания, и непосредственно прочностью самого испытуемого объекта. Способ ультразвукового определения прочности на сжатие рекомендуется проводить лишь относительно материалов класса В7,5 –В35.

Как правило, при неразрушающих методах анализа применяется прибор, который называется измеритель прочности бетона. Такие измерители бывают трех типов: электронные, склерометры, механические и ультразвуковые. Каждый из типов приборов характеризуется своим принципом действия и выявлением результата.

Обзор приборов для определения прочности бетона

Электронный прибор для измерения прочности бетона может быть разного способа воздействия. Принцип действия некоторых из них основан отскоке упругого типа. Такие, как правило, применяются для материалов толщиной свыше десяти сантиметров. Есть электронные измерители, принцип которых основан импульсе от удара. Его погрешность находится в пределах семи процентов. Также распространена двухпараметрическая модель, где происходит проверка двойного действия: удар и отскок. И последняя группа электронных измерителей, принцип действия которой – отрыв со скалыванием – это двухцилиндровые гидропрессы на двух опорах, в которые встроена электроника.

С помощью склерометра можно оценить физико-механические свойства разных стройматериалов, в том числе и бетона, как на готовых изделиях, так и на образцах. Склерометр выявляет неоднородность материала, зоны некачественного уплотнения. Данный прибор действует по такому принципу: боек ударяет по поверхности бетона с определенной энергией, при этом измеряется высота отскока. Именно высоту отскока принято считать косвенной характеристикой сжатия. Зачастую склерометры используются при необходимости проведения экспресс-анализа.

Механические измерители действуют способом упругого отскока. Погрешность их показателей может составлять до пятнадцати процентов. Используется для изделий и образцов с толщиной больше десяти сантиметров.

Ультразвуковые измерители определяют однородность массы, измеряют протяженность трещин, обнаруживают имеющиеся недостатки. Они применяются для сквозного и поверхностного контроля прочности. Как определить прочность бетона ультразвуковым измерителем? Просто обратить внимание на показатель скорости, с которой будет распространяться ультразвук. Эта скорость как раз и зависит от упругости, а также от плотности материала.

Наличие любых трещин или пустот сразу отражается на скорости, с которой распространяется ультразвук. Измерители этой группы часто используются в роли дефектоскопов. С помощью данных устройств легко вычислить, например, глубину трещины или выявить, где именно в объекте образовались пустоты. Вообще, ультразвуковой измеритель – прекрасный вариант для проведения глубокого анализа конструкции.

Похожие статьи

Для улучшения декоратиных свойств бетона обычно используются пигменты либо кислотные красители. Последние наносятся на поверхность бетонных изделий, а результатом взаимодействия красителя с основанием становится новое нерастворимое ......

После устройства фундамента или цокольного этажа, наступает этап устройства полов по грунту. В периметр будущего здания, образованный ленточным фундаментом, насыпается грунт вынутый при разработке котлована грунт. Грунт насыпается до нужного уровня и уплотняется...

Другой фактор, влияющий на скорость затвердевания — понижение температурных показателей, которое уменьшает ее значение. Справедлива и обратная зависимость, при которой на графике набора прочности бетона видно, как повышение температурных значений, с соблюдением необходимого...

Понижение растворимости, выделяющегося цемента при гидратации, вот за счет чего действуют ускорители твердения бетона. Далее происходит гидратация клинкерных минералов и изменение в большую сторону количества новообразований в цементном камне. Поэтому значительно увеличивается прочность бетона, который содержит ускоритель, в первые 3-7 суток...

Маркировочное соотношение бетонных компонентов в цифрах, по таблице марок бетона, может быть от М100 до М500. При строительстве объектов стратегического значения применяют особо прочный материал, маркировка которого обозначает класс и марку свыше М500. Для общего строительства использования столь высокопрочной бетонной смеси нецелесообразно. Любой бетонный...

Когда устанавливается съемная опалубка для монолитного строительства, необъодимо ориентироваться на параметры строящихся зданий. Ширина стены здания и правильно оснащенной фундаментной основы должна составлять 50 сантиметров, высота в пределах одного метра. Именно этими числовыми...

promplace.ru

Прибор для измерения прочности бетона – основные виды. Механический и ультразвуковой методы применения

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для этого используются различные методы и виды оборудования, именно их мы и рассмотрим в рамках данного обзора.

На фото — благодаря появлению высокотехнологичных приборов определение прочности в наши дни стало намного проще

Основные способы проверки бетона

Стоит отметить, что оборудование данной группы может использоваться для проверки прочности, как бетона, так и кирпича. Под прочностью понимается способность материала противостоять разрушению под действием внутреннего напряжения и различным внешним факторам, чем стойкость выше, тем надежнее и долговечнее конструкция.

Оборудование для проверки прочности может быть и очень большим

Провести проверку можно посредством двух способов:

  • Разрушающий: суть этого метода заключается в том, что в специальном прессе раздавливаются предварительно подготовленные заготовки. Это могут быть кубы, которые отливаются из контролируемого бетона или керны – фрагменты цилиндрической формы, получить которые помогает алмазное бурение отверстий в бетоне и изъятие фрагмента.

Чтобы получить керн, необходимо проводить бурение бетона

  • Второй вариант – использовать прибор для определения прочности бетона неразрушающим методом. Такое оборудование измеряет физические величины, оказывающие прямое влияние на прочность бетона, и пересчитывает их, выдавая нужные показатели. Естественно, чем качественнее оборудование, тем меньше погрешность и выше точность исследований.

Виды приборов

При проведении измерительных мероприятий чаще всего используется один из двух основных типов измерительного оборудования. Естественно, проведение работ своими руками подразумевает именно этот вариант, так как цена специального пресса очень велика, да и нет смысла держать его, если у вас нет специальной испытательной лаборатории по оказанию услуг по измерению прочности и других показателей.

Определение прочности механическим методом

Если проводится неразрушающий контроль (НК) механическим способом, то главный нормативный акт, которым обязательно следует руководствоваться, это ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами НК». В данном документе изложены правила испытаний как тяжелых, так и легких бетонов с предельными значениями прочности, не выходящими за рамки диапазона от 5 до 100 Мпа.

В данную группу приспособлений входит несколько основных разновидностей оборудования, которое отличается по способу определения тех или иных косвенных характеристик.

Это могут быть следующие показатели:

  • Энергия удара специальным бойком.
  • Значение отскока бойка от прижатого к стене ударника.
  • Размер оставленного следа от удара.
  • Показатель усилия, необходимого для разрушения небольшого участка на ребрах конструкции или при вырыве закрепленного анкерного болта.

Прибор может состоять из бойка и блока управления, или все может располагаться в бойке (самые современные варианты реализуются именно так)

Особенности проведения измерений с помощью того или иного метода зависят от множества факторов, поэтому инструкция по эксплуатации прибора обязательна к изучению. Рассмотрим самый популярный вариант проведения испытаний – метод упругого отскока.

Технология выглядит следующим образом:

  • Измерительный узел должен располагаться перпендикулярно поверхность, чем больше перекос, тем больше погрешность измерений, не стоит забывать об этом.

Сила должна прилагаться перпендикулярно, это гарантирует точность измерений

  • Проверку нужно провести на разных участках поверхности, для корректности измерений следует иметь как минимум 5 значений и определить среднее арифметическое.
  • С помощью специальной формулы высчитывается показатель прочности той или иной конструкции. На самом деле, все достаточно просто и, следуя рекомендациям и требованиям инструкции, можно проводить качественные измерения, даже не имея соответствующей практики.

Современные приборы очень компактны и удобны в работе

Важно! Чтобы показатели были точными и корректными, не стоит забывать, что минимальная толщина бетонной конструкции не должна быть менее 100 мм.

Использование ультразвукового метода

При использовании данного способа расчета показателей прочности бетона или кирпича все требования к измерениям и порядок их проведения определяет ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Стоит отметить, что с помощью такого метода можно проводить измерения практически всех видов бетона, это делает данный вариант максимально универсальным.

Ультразвуковой прибор для определения прочности бетона отличается простотой и удобством работы

С помощью ультразвука можно измерять как показатели готовых конструкций, так и материала, который еще не набрал оптимальные показатели прочности. То есть, можно отслеживать процесс отвердения материала.

Особенности данного вида измерений заключаются в следующем:

  • Сам метод основан на физической взаимосвязи значения прочности бетона и скорости распространения по нему звуковых колебаний. Эта взаимосвязь может выражаться в виде формулы, графика или таблицы, специалисты называют ее «градуировочная характеристика». Этот показатель определяется отдельно для каждого объекта измерений, в процессе проверки используется поверхностное либо сквозное прозвучивание.
  • По результатам проверки и подбора градуировочных характеристик проводятся основные испытательные мероприятия, причем проводиться они должны тем же способом, что и проверочные.
  • На основе полученных показателей и определяется фактическая прочность того или иного участка бетонной конструкции.

Важно! Чем точнее будет определена градуировочная характеристика, тем выше будет точность окончательных результатов.

Проверка может понадобиться в самых различных случаях: от определения надежности конструкции до расчета динамики застывания бетонного материала. Если будет осуществляться резка железобетона алмазными кругами,также желательно измерить прочность и подобрать оптимальный тип круга по бетону.

Приборы могут иметь самую различную конфигурацию, важно, чтобы точность измерений была как можно выше

Вывод

В некоторых случаях от правильности измерений зависит очень многое, особенно если дело касается ремонтных работ и мероприятий по укреплению конструкции. Только корректные данные гарантируют, что будет выбран нужный вариант дальнейших действий. Видео в этой статье поможет разобраться в некоторых особенностях использования измерительных приборов.

rusbetonplus.ru

vest-beton.ru

Прибор, определяющий прочность бетона. бетон

Контроль прочности бетона по результатам испытаний на сжатие образцов-кубов не может полностью удовлетворять работников лабораторий, проектировщиков и строителей, потому что результаты испытаний образцов не всегда отражают действительную прочность бетона в изделиях и конструкциях.

Контроль прочности бетона по результатам испытаний на сжатие образцов-кубов не может полностью удовлетворять работников лабораторий, проектировщиков и строителей, потому что результаты испытаний образцов не всегда отражают действительную прочность бетона в изделиях и конструкциях. В ряде случаев контроль прочности бетона путем испытания стандартных образцов создает определенные трудности. Например, часто возникает необходимость дополнительно определить прочность бетона в более поздние сроки, чем предполагалось ранее; однако отсутствие контрольных образцов не позволяет это сделать. Не представляется возможным оценить прочность бетона ранее возведенных железобетонных конструкций и сооружений. В таких случаях прочность бетона конструкции проверяют путем высверливания из нее цилиндров (кернов) с последующим испытанием их на сжатие. Обычно в лабораторию доставляют керны с неправильными основаниями, поэтому перед испытаниями на сжатие их необходимо выровнять, залить цементным раствором и подшлифовать. Подготовленные цилиндры испытывают на сжатие на гидравлическом прессе. Для определения марки бетона полученную прочность цилиндров размером d = h = 50 мм умножают на коэффициент 0,8. Однако этот метод нельзя применять для испытания бетона некоторых сборных железобетонных конструкций из-за малой толщины и высокого процента армирования. Такие конструкции надо испытывать неразрушающими методами. Существует ряд механических и физических методов, позволяющих определить прочность и однородность бетона в различных местах железобетонных изделий и конструкций без их разрушения. В этих методах используются различные приборы, основанные на принципе получения пластической деформации поверхности бетона путем заглубления в него бойка (шарика) при ударе с определенной силой, а также на принципе упругого отскока от поверхности бетона и получения значения упругой деформации. К таким приборам относятся шариковый молоток конструкции И. А. Физделя, эталонный молоток НИИМосстроя конструкции К. П. Кашкарова, прибор КИСИ. Шариковый молоток конструкции И. А. Физделя. состоит из металлической рабочей части массой 250 г, которая с одной стороны заострена, а с другой, ударной, имеет сферическое гнездо с завальцованным вращающимся шариком и деревянной ручкой длиной 300 мм и массой 100 г. При ударе молотком шарик, вминаясь в бетон, образует лунку глубиной, зависящей от прочности бетона, вернее от прочности основной составной части структуры бетона - цементного камня. Чтобы обеспечить постоянство силы удара, испытание рекомендуется производить локтевым ударом, осуществляемым частью правой руки до локтя. Бетон следует испытывать со стороны боковых поверхностей конструкции, предварительно очистив их от пыли и посторонних предметов. В случае испытания со стороны верхней поверхности намечаемые места ударов должны быть предварительно очищены от слабой цементной пленки. Для оценки прочности бетона в данном месте конструкции необходимо сделать 6-10 ударов молотком и измерить (с погрешностью 0,1 мм) получившиеся лунки штангенциркулем или градуированной лупой с 10-кратным увеличением. Средний диаметр лунок вычисляют как среднее арифметическое значение диаметров, близких по размерам, нескольких лунок(4-6 шт.). Случайные лунки, полученные при неточном ударе, а также такие, которые образованы при попадании шарика в раковины или щебень, не измеряют. Прочность бетона в данном месте конструкции определяют, пользуясь графиком зависимости размера лунки от прочности. Точность данного метода в значительной мере зависит от умения и опыта работника, выполняющего испытание. Рассмотрим эталонный молоток НИИМосстроя конструкции К. П. Кашкарова. Метод определения прочности бетона этим молотком заключается в том, что при ударе им по поверхности железобетонной конструкции одновременно образуются два отпечатка: первый диаметром do на бетоне, второй диаметрм d3 на эталонном стержне молотка. За косвенную характеристику прочности бетона принимают отношение do/d3, по которому определяют прочность бетона в данном месте конструкции. Эталонный стержень изготовлен из стали марки СтЗ, длина его 150 мм, диаметр 10 мм, конец стержня заострен. При испытании бетона эталонным молотком наносят не менее десяти ударов в различных точках по длине или площади конструкции. Во время испытания необходимо следить за тем, чтобы ось головки молотка была перпендикулярна поверхности испытуемой конструкции. После каждого удара эталонный стержень передвигают в стакане молотка таким образом, чтобы расстояние между центрами соседних отпечатков было не менее 10 мм. Удары по поверхности испытуемой конструкции следует наносить с таким расчетом, чтобы расстояние между отпечатками не превышало 30 мм. Диаметры лунок на бетонной поверхности и эталонном стержне измеряют с погрешностью 0,1 мм угловым масштабом, состоящим из двух стальных измерительных линеек, соединенных под углом. Прочность бетона в конструкциях устанавливается по графику согласно вычисленному отношению dydj, как среднее арифметическое результатов десяти ударов молотка. Полученные таким образом значения Ясж справедливы для бетона с влажностью 2-6%. В случае повышенной влажности определенный таким способом предел прочности бетона необходимо умножить на поправочный коэффициент влажности. Этот коэффициент имеет значение 1,1 и 1,2 при влажности соответственно 8 и 12% и 1,4 - для мокрой поверхности. При испытании бетона эталонным молотком учитываются влажность поверхностного слоя бетона, изменение режима его твердения, колебания механических свойств эталонных стержней и ряд других факторов. Прочность бетона в испытуемой конструкции оценивается по достаточно большому числу отпечатков (20-30 шт.). Все это повышает точность данных, получаемых при использовании эталонного молотка конструкции К. П. Кашкарова. Прибор КИСИ служит для определения прочности бетона в конструкциях. Принцип действия его основан на измерениях величины отскока молотка, падающего с постоянной высоты под действием пружины. Перед испытанием кольцо опускают в крайнее нижнее положение и, нажимая взводную кнопку, оттягиа-ют молоток кольцом в верхнее положение, где он удерживается стопорной скобой. После этого прибор устанавливают на предварительно выбранную гладкую поверхность испытуемой конструкции и, нажимая на спусковую кнопку, освобождают молоток. Молоток под действием растянутой пружины ударяет по бойку и, отскакивая от него, перемещает указательную стрелку вверх по градуированной шкале. Указательная стрелка фиксирует величину отскока молотка в мм. Прочность бетона определяют на основании показаний прибора в результате 6-7 испытаний по тарировочному графику. Используя прибор прочность бетона в конструкциях может быть определена методами, основанными на вдавливании ударников или образовании вмятин мощным ударом -стрельбой или взрывом (например, с помощью строительно-монтажного пистолета СМП-1). Кроме того, существует еще целый ряд различных механических способов определения прочности бетона без разрушения изделий, однако все они дают ориентировочные показатели прочности поверхностного слоя бетона в данном месте изделия. Физические методы контроля прочности бетона изделий и конструкций находят в настоящее время широкое применение. Эти методы могут быть разделены на следующие основные виды: ультразвуковой импульсный, метод волны удара, резонансный и радиометрический. Ультразвуковой импульсный метод контроля прочности бетона основан на измерении распространения в бетоне продольных ультразвуковых волн и степени их затухания. По заранее составленным графикам зависимости скорости ультразвука от прочности бетона данного состава определяется прочность контролируемой конструкции. Наибольшее распространение в практике получили приборы: Бетон-8, УК-ЮП, УК-16П ИУК-12П. Контроль прочности бетона методом волны удара основан на измерении скорости распространения в бетоне продольных волн, вызванных механическим ударом. Для испытания бетона этим методом разработан ряд приборов (ПИК-6, Удар-1, Удар-2, МК-1 и др.). Резонансный (вибрационный) метод контроля прочности бетона в конструкции основан на определении частоты собственных колебаний и характеристики их затухания. Для данного метода используют приборы: измеритель амплитудного затухания ИАЗ, ПИК-8 конструкции Союздорнии и др. Радиометрический метод испытания заключается в измерении интенсивности потока радиоактивных лучей, проходящих через исследуемое изделие. В изменении интенсивности у-лучей судят о плотности бетона, его объемной массе и других характеристиках. Этот метод находит также применение для выявления скрытых дефектов в железобетонных конструкциях. Кроме определения прочности и выявления внутренних дефектов проверяют правильность расположения арматуры и толщину защитного слоя бетона конструкции. В условиях строительной площадки расположение арматуры (для тонкостенных конструкций) и толщину защитного слоя бетона в железобетонных конструкциях проверяют с помощью электромагнитах приборов ИЗС-10Н, ИЗС-2. Принцип действия приборов основан на изменении магнитного сопротивления датчика при различном расстоянии его от остальной арматуры. Этим прибором можно измерять защитный слой бетона толщиной 5-70 мм в железобетонных конструкциях с арматурой диаметром 6-16 мм. Для определения толщины защитного слоя датчик устанавливают на ровную поверхность конструкции и передвигают по ней, наблюдая за показаниями стрелки прибора. Для контроля качества строительных материалов и железобетонных конструкций в организации «Главле-нинградстрой» созданы специальные стационарные и передвижные электронно-акустические и радиометрические лаборатории. С помощью аппаратуры этих лабораторий модуль упругости сборных железобетонных элементов, выявляют внутренние дефекты конструкций, проверяют расположение арматуры в железобетонных элементах.

Температурный лист прогрева бетона

k-oo.top

прибор для определения марки бетона

Купить бетон в Рощино. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Купить бетон в Сосново. Бетон доставка: Сколько будет стоить доставка бетона в Сосново 8.м3 бетона марки М250. Какие бетонные заводы находятся в непосредственной близости от Сосново.

Купить бетон в Красном селе. Бетон доставка: Необходимо рассчитать стоимость бетона с доставкой от 6 до 8м3 бетона в красное село. Оплата за бетон будет по безналичному расчету.

Купить бетон в Гатчине. Бетон доставка: Какова стоимость карьерного песка средней зернистости и бетона за куб с бетонного завода? Доставка в Гатчину + 5 км. Нужно доставить 20м3 бетона.

Купить бетон в Волосово. Бетон доставка: Сколько стоит куб бетона с доставкой в Волосово. Надо 22м. куб. бетона марки М250.

Купить бетон во Всеволожске. Бетон доставка: Сколько будет стоить песок карьерный 30 м3 и доставка 20 м3 бетона. Бетон необходим с завода. Доставка во Всеволожск по Дороги Жизни в сторону Романовки. Мне еще надо засыпать овраг, может купить супесь, что это такое.?

Бетон доставка: На объект в Тосно необходимо 70 м3 бетона. Желательно марку бетона не ниже М300. Интересует стоимость бетона и доставки до объекта.

Купить бетон в Луге. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Купить бетон в Кировске. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Купить бетон в Пушкене. Бетон доставка: Под фундамент дома необходимо несколько машин бетона доставка будет в выходные. Доставку нужно будет разбить на 10 кубов бетона, 13 кубов бетона и 6 кубов бетона. Рассчитайте стоимость бетона и стоимость доставки до объекта в Пушкин.

Купить бетон в Колпино. Бетон доставка: На строительную площадку в Колпино требуется 70 м3 бетона М250. Сколько будет стоить бетон с завода. Пришлите полный прайс лист на все марки бетона.

Купить бетон в Ломоносове. Бетон доставка: Рассчитайте цену за куб бетона М200 с доставкой в Ломоносов и отгрузкой бетона с бетонного завода. Какая скидка будет при заказе от 300 кубов? Возможно ли оплата по безналу с отсрочкой или в кредит.

Купить бетон в Парголове. Бетон доставка: Нужен срочно бетон недорого с бетонного завода с доставкой до объекта в Парголово. Доставить нужно тремя миксерами в каждом будет по 10 кубов бетона. Еще из дополнительного оборудования нужен автобетононасос. Подача бетона будет на расстоянии 25 метров. Дайте коммерческое предложение. Срочно.

Купить бетон в Белоострове. Бетон доставка: Я представитель крупной строительной компании. Занимаемся строительством загородных домов. Нужен постоянный договор на поставку бетона и изготовление бетона по нашей рецептуре бетона. Пришлите коммерческое предложение или договор от ближайшего бетонного завода на поставку бетона в Белоостров.

Купить бетон Кронштадт. Бетон доставка: Нужен бетон гидротехнический В30 (М400) W12 F300 . Сколько стоит бетон, условия доставки В30 гидротехнического бетона до объекта в Кронштадте? Какая стоимость доставки бетона?

Купить бетон в Колтушах. Бетон доставка: С завода в Колтушах нужен бетон B22.5 (M300). Нужна цена за куб бетона. Просчитайте стоимость доставки. Везем бетон в частный сектор приблизительно 20 км от города.

tovbeton.ru


Смотрите также