Марку бетона по морозостойкости принимают за соответствующую требуемой если


ГОСТ 10060.2-95 Бетоны. Ускоренные методы определения морозостойкости при многократном замораживании и оттаивании, , ГОСТ от 05 марта 1996 года №10060.2-95

ГОСТ 10060.2-95

Группа Ж19

БЕТОНЫ

УСКОРЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ПРИМНОГОКРАТНОМ ЗАМОРАЖИВАНИИ И ОТТАИВАНИИ

Concretes. Rapid method for the determinationof frost-resistance by repeatedalternated freezing and thawing

ОКС 91.100.30ОКСТУ 5879

Дата введения 1996-09-01

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Российской ФедерацииВНЕСЕН Минстроем России

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 22 ноября 1995 г.За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан

Госкомархитектстрой Республики Узбекистан

3 ВЗАМЕН ГОСТ 10060-87 в части второго и третьего методов определения морозостойкости

4 ВВЕДЕН В ДЕЙСТВИЕ с 1 сентября 1996 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 5 марта 1996 г. № 18-17

1 Область применения

Настоящий стандарт распространяется на тяжелые, мелкозернистые и легкие бетоны, кроме легких со средней плотностью менее D1500, и плотные силикатные бетоны.Стандарт устанавливает базовый для бетонов дорожных и аэродромных покрытий (второй) и ускоренные для всех видов бетонов (второй и третий) методы определения морозостойкости при многократном замораживании и оттаивании в растворе соли.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:ГОСТ 4233-77 Натрий хлористый. Технические условия.ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

3 Определения

В настоящем стандарте приняты термины и определения по ГОСТ 10060.0.

4 Средства испытания и вспомогательные устройства

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2) °С (второй метод) и до минус (50±5) °С (третий метод).

4.3 Технические весы с точностью измерения, соответствующей метрологической обеспеченности метода.

4.4 Хлористый натрий по ГОСТ 4233.

4.5 Вода по ГОСТ 23732.

4.6 Деревянные прокладки треугольного сечения высотой 50 мм.

4.7 Ванна для насыщения образцов 5%-ным водным раствором хлористого натрия.

4.8 Ванна для оттаивания образцов бетона, оборудованная устройством для поддержания температуры раствора хлористого натрия в пределах (18±2) °С.

4.9 Емкости для испытания образцов на морозостойкость длиной, шириной, высотой соответственно 90х90х110 и 120х120х140 мм, имеют толщину стенок (1,0±0,5) мм.

4.10 Сетчатый контейнер для размещения основных образцов.

4.11 Сетчатый стеллаж для размещения образцов в морозильной камере.Примечание - Ванны, емкости и стеллажи изготавливают из коррозионно-стойкой (нержавеющей) стали или другого коррозионно-стойкого материала.

5 Порядок подготовки к проведению испытания

5.1 Бетонные образцы изготавливают и отбирают по 4.5-4.10 ГОСТ 10060.0.

5.2 Основные и контрольные образцы бетона перед испытанием насыщают 5%-ным водным раствором хлористого натрия при температуре (18±2) °С по 4.11 ГОСТ 10060.0.

5.3 Контрольные образцы через 2-4 ч после извлечения из раствора испытывают на сжатие по ГОСТ 10180, а для серии образцов бетона дорожного и аэродромного покрытия дополнительно определяют массу образцов. Основные образцы после насыщения подвергают испытаниям на замораживание и оттаивание.

6 Порядок проведения испытаний

6.1 Испытание по второму методу

6.1.1 Условия загружения в морозильную камеру и замораживания образцов принимают по 6.2-6.5 ГОСТ 10060.1.

6.1.2 Раствор хлористого натрия в ванне для оттаивания меняют через каждые 100 циклов замораживания и оттаивания.

6.1.3 Основные образцы через 2-4 ч после проведения соответствующего числа циклов замораживания и оттаивания извлекают из ванны и испытывают на сжатие по ГОСТ 10180, а для серии образцов бетона дорожного и аэродромного покрытия дополнительно определяют массу основных образцов.

6.2 Испытание по третьему методу

6.2.1 Основные образцы, насыщенные 5%-ным водным раствором хлористого натрия, помещают в заполненную таким же раствором емкость для испытания образцов на морозостойкость. Образцы устанавливают на две деревянные прокладки, при этом расстояние между образцами и стенками емкости должно быть (10±2) мм, слой раствора над поверхностью образцов должен быть не менее 10 мм.

6.2.2 Число циклов замораживания и оттаивания принимают по таблице 3 ГОСТ 10060.0.

6.2.3 Раствор хлористого натрия в емкости для замораживания и оттаивания меняют через каждые 20 циклов.

6.2.4 Основные образцы помещают в морозильную камеру при температуре воздуха в ней не выше 10 °С в закрытых сверху емкостях так, чтобы расстояние между стенками емкостей и камеры было не менее 50 мм. После установления в закрытой камере температуры минус 10 °С температуру понижают в течение (2,5±0,5) ч до минус (50-55) °С и делают выдержку (2,5±0,5) ч. Далее температуру в камере повышают в течение (1,5±0,5) ч до минус 10 °С, и при этой температуре выгружают из нее емкости с образцами.При замораживании кубов с ребром 70 мм время понижения и выдерживания температуры уменьшают на 1 ч.

6.2.5 Кубы с ребром 100 мм оттаивают в течение (2,5±0,5) ч, с ребром 70 мм - (1,5±0,5) ч в ванне с 5%-ным водным раствором хлористого натрия температурой (18±2) °С. При этом емкости погружают в ванну таким образом, чтобы каждая из них была окружена слоем раствора не менее 50 мм.

6.2.6 Основные образцы через 2-4 ч после извлечения из емкости испытывают на сжатие по ГОСТ 10180. Для бетона дорожного и аэродромного покрытия предварительно определяют массу образцов.

7 Правила обработки результатов испытаний

7.1 Марку бетона по морозостойкости принимают за соответствующую требуемой, если среднее значение прочности на сжатие основных образцов после установленных (таблица 3 ГОСТ 10060.0) для данной марки числа циклов переменного замораживания и оттаивания уменьшилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.Для бетонов дорожных и аэродромных покрытий потеря массы основных образцов не должна превышать 3%.

7.2 Если среднее значение прочности бетона на сжатие основных образцов после промежуточных испытаний по сравнению со средним значением прочности бетона на сжатие серии контрольных образцов уменьшилось более чем на 5% или уменьшение среднего значения массы серии основных образцов бетонов дорожных и аэродромных покрытий превысило 3%, то испытания прекращают и в журнале испытаний делают запись, что бетон не соответствует требуемой марке по морозостойкости.

7.3 Среднюю прочность бетона серии контрольных и основных образцов определяют по ГОСТ 10180.Уменьшение массы для бетонов дорожных и аэродромных покрытий определяют сравнением среднеарифметической массы серии основных образцов после промежуточных и итоговых испытаний со среднеарифметическим значением массы основных образцов до испытания. Текст документа сверен по:официальное изданиеБетоны. Методы определения морозостойкости: Сб. ГОСТов. ГОСТ 10060.0-95-ГОСТ 10060.4-95. -

М.: Минстрой России, ГУП ЦПП, 1997

docs.cntd.ru

Бетоны. Базовый метод определения морозостойкости

ГОСТ 10060.1-95

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БАЗОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ

МЕЖГОСУДАРСТВЕННАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОМИССИЯ ПО СТАНДАРТИЗАЦИИ И ТЕХНИЧЕСКОМУ НОРМИРОВАНИЮ В СТРОИТЕЛЬСТВЕ (МНТКС)

Москва

Предисловие

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Российской Федерации

ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 22 ноября 1995 г.

За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан

Госкомархитектстрой Республики Узбекистан

3 ВЗАМЕН ГОСТ 10060-87 в части первого метода определения морозостойкости

4 ВВЕДЕН в действие с 1 сентября 1996 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 5 марта 1996 г. № 18-17

СОДЕРЖАНИЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ

БАЗОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ

CONCRETES, BASIC METHOD FOR THE DETERMINATION

Дата введения 1996-09-01

Настоящий стандарт распространяется на все виды бетонов, кроме бетонов дорожных и аэродромных покрытий, и устанавливает базовый (первый) метод определения морозостойкости.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

В настоящем стандарте приняты термины и определения по ГОСТ 10060.0.

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2)°С.

4.3. Технические весы, обеспечивающие точность измерения в соответствии с метрологической обеспеченностью метода.

4.4 Ванны для насыщения и оттаивания образцов с устройством для поддержания температуры воды (18±2)°С.

4.5 Сетчатый контейнер для размещения основных образцов.

4.6 Сетчатый стеллаж для размещения образцов в морозильной камере.

4.7 Вода по ГОСТ 23732.

5.1 Бетонные образцы изготовляют и отбирают по 4.5 - 4.10 ГОСТ 10060.0.

5.2 Контрольные и основные образцы насыщают водой по 4.11 ГОСТ 10060.0.

6.1 Контрольные образцы через 2-4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

6.2 Основные образцы загружают в морозильную камеру в контейнере или устанавливают на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считают момент установления в камере температуры минус 16 °С.

6.3 Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, устанавливают в соответствии с таблицей 3 ГОСТ 10060.0. В каждом возрасте испытывают по шесть основных образцов.

6.4 Образцы испытывают по режиму, указанному в таблице 1.

6.5 Образцы после замораживания оттаивают в ванне с водой при температуре (18±2)°С. Образцы размещают, как указано в п. 6.2, при этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

Таблица 1

Размер образца, мм

Режим испытаний

Замораживание

Оттаивание

время, не менее, ч

температура, °С

время, ч

температура, °С

100х100х100

2,5

минус 18 ± 2

2 ± 0,5

18 ± 2

150х150х150

3,5

3,0 ± 0,5

200х200х200

5,5

5,0 ± 0,5

Примечание - Минимальную продолжительность замораживания увеличивают для легких бетонов со средней плотностью D1500 - D1200 на 0,5 ч, со средней плотностью D1200 - D1000 - со средней плотностью D900 и менее - на 1,5 ч.

6.6 Температуру воздуха в морозильной камере измеряют в центре ее объема в непосредственной близости от образцов.

6.7 Воду в ванне для оттаивания образцов меняют через каждые 100 циклов переменного замораживания и оттаивания.

6.8 Основные образцы через 2 - 4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

7.1 Марку бетона по морозостойкости принимают за соответствующую требуемой, если среднее значение прочности на сжатие основных образцов после установленных (таблица 3 ГОСТ 10060.0) для данной марки числа циклов переменного замораживания и оттаивания уменьшилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Уменьшение прочности на сжатие основных образцов по сравнению со средней прочностью контрольных образцов легкого бетона с маркой по морозостойкостью F50 и менее не должно превышать 15 % при условии выполнения требований 4.14 ГОСТ 10060.0.

7.2 Если уменьшение среднего значения прочности основных образцов после промежуточных испытаний по сравнению со средним значением прочности на сжатие контрольных образцов бетона превышает значения, указанные в п. 7.1, то испытание прекращают и в журнале испытаний делают запись, что бетон не соответствует требуемой марке по морозостойкости.

7.3 Среднюю прочность бетона серии контрольных и основных образцов определяют по ГОСТ 10180.

7.4 Исходные данные и результаты испытания контрольных и основных образцов бетона заносят в журнал испытания по форме, приведенной в приложении А ГОСТ 10060.0.

Ключевые слова: базовый метод, число циклов замораживания и оттаивания, средняя прочность бетона, уменьшение прочности на сжатие

aquagroup.ru

ГОСТ 10060.1-95 «Бетоны. Базовый метод определения морозостойкости»

ГОСТ 10060.1-95

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БАЗОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ

МЕЖГОСУДАРСТВЕННАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОМИССИЯ ПО СТАНДАРТИЗАЦИИ И ТЕХНИЧЕСКОМУ НОРМИРОВАНИЮ В СТРОИТЕЛЬСТВЕ (МНТКС)

Москва

Предисловие

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Российской Федерации

ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 22 ноября 1995 г.

За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан

Госкомархитектстрой Республики Узбекистан

3 ВЗАМЕН ГОСТ 10060-87 в части первого метода определения морозостойкости

4 ВВЕДЕН в действие с 1 сентября 1996 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 5 марта 1996 г. № 18-17

СОДЕРЖАНИЕ

1 Область применения 1

2 Нормативные ссылки 2

3 Определения 2

4 Средства испытания и вспомогательные устройства 2

5 Порядок подготовки к проведению испытаний 2

6 Порядок проведения испытаний 2

7 Правила обработки результатов испытаний 3

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ

БАЗОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ

CONCRETES, BASIC METHOD FOR THE DETERMINATION

OF FROST-RESISTANCE

Дата введения 1996-09-01

1 Область применения

Настоящий стандарт распространяется на все виды бетонов, кроме бетонов дорожных и аэродромных покрытий, и устанавливает базовый (первый) метод определения морозостойкости.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

3 Определения

В настоящем стандарте приняты термины и определения по ГОСТ 10060.0.

4 Средства испытания и вспомогательные устройства

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2)°С.

4.3. Технические весы, обеспечивающие точность измерения в соответствии с метрологической обеспеченностью метода.

4.4 Ванны для насыщения и оттаивания образцов с устройством для поддержания температуры воды (18±2)°С.

4.5 Сетчатый контейнер для размещения основных образцов.

4.6 Сетчатый стеллаж для размещения образцов в морозильной камере.

4.7 Вода по ГОСТ 23732.

5 Порядок подготовки к проведению испытаний

5.1 Бетонные образцы изготовляют и отбирают по 4.5 - 4.10 ГОСТ 10060.0.

5.2 Контрольные и основные образцы насыщают водой по 4.11 ГОСТ 10060.0.

6 Порядок проведения испытаний

6.1 Контрольные образцы через 2-4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

6.2 Основные образцы загружают в морозильную камеру в контейнере или устанавливают на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считают момент установления в камере температуры минус 16 °С.

6.3 Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, устанавливают в соответствии с таблицей 3 ГОСТ 10060.0. В каждом возрасте испытывают по шесть основных образцов.

6.4 Образцы испытывают по режиму, указанному в таблице 1.

6.5 Образцы после замораживания оттаивают в ванне с водой при температуре (18±2)°С. Образцы размещают, как указано в п. 6.2, при этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

Таблица 1

Размер образца, мм

Режим испытаний

Замораживание

Оттаивание

время, не менее, ч

температура, °С

время, ч

температура, °С

100х100х100

2,5

минус 18 ± 2

2 ± 0,5

18 ± 2

150х150х150

3,5

3,0 ± 0,5

200х200х200

5,5

5,0 ± 0,5

Примечание - Минимальную продолжительность замораживания увеличивают для легких бетонов со средней плотностью D1500 - D1200 на 0,5 ч, со средней плотностью D1200 - D1000 - со средней плотностью D900 и менее - на 1,5 ч.

6.6 Температуру воздуха в морозильной камере измеряют в центре ее объема в непосредственной близости от образцов.

6.7 Воду в ванне для оттаивания образцов меняют через каждые 100 циклов переменного замораживания и оттаивания.

6.8 Основные образцы через 2 - 4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

7 Правила обработки результатов испытаний

7.1 Марку бетона по морозостойкости принимают за соответствующую требуемой, если среднее значение прочности на сжатие основных образцов после установленных (таблица 3 ГОСТ 10060.0) для данной марки числа циклов переменного замораживания и оттаивания уменьшилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Уменьшение прочности на сжатие основных образцов по сравнению со средней прочностью контрольных образцов легкого бетона с маркой по морозостойкостью F50 и менее не должно превышать 15 % при условии выполнения требований 4.14 ГОСТ 10060.0.

7.2 Если уменьшение среднего значения прочности основных образцов после промежуточных испытаний по сравнению со средним значением прочности на сжатие контрольных образцов бетона превышает значения, указанные в п. 7.1, то испытание прекращают и в журнале испытаний делают запись, что бетон не соответствует требуемой марке по морозостойкости.

7.3 Среднюю прочность бетона серии контрольных и основных образцов определяют по ГОСТ 10180.

7.4 Исходные данные и результаты испытания контрольных и основных образцов бетона заносят в журнал испытания по форме, приведенной в приложении А ГОСТ 10060.0.

Ключевые слова: базовый метод, число циклов замораживания и оттаивания, средняя прочность бетона, уменьшение прочности на сжатие

stroysvoimirukami.ru

Способ определения марки бетона по морозостойкости

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации. Дополнительно определяют предел длительной прочности каждого образца неразрушающим методом в условиях растяжения. После размораживания определяют относительную остаточную деформацию образцов и определяют энергию, рассеянную в единице объема каждого образца в процессе его замораживания-размораживания. Далее нагружают их в условиях одноосного сжатия до экстремальной нагрузки, отвечающей кратковременному пределу прочности, определяют энергию, рассеянную в единице объема образца в процессе его сжатия до экстремальной нагрузки, и по полученным результатам рассчитывают марку по морозостойкости каждого образца. Марку бетона по морозостойкости определяют как среднеарифметическое для марок образцов. Технический результат −повышение оперативности, уменьшение трудоемкости и расширение арсенала технических средств. 1 табл.

 

Изобретение относится к методам испытаний пористых водонасыщенных тел и предназначено для определения марки бетона по морозостойкости, т.е. числа стандартных циклов замораживания-размораживания (например, от +20 до -20°C по 4 часа), необходимых для снижения предела прочности образцов, насыщенных водой, на величину, оговоренную стандартом, в частности, на 5 или 15%, т.е. относительное снижение предела прочности ΔR/R=0,05…0,15, где R - кратковременный предел прочности, ΔR - абсолютное изменение кратковременного предела прочности.

Известен базовый способ определения морозостойкости [ГОСТ - 10060.1-95 «Базовый метод определения морозостойкости»], включающий изготовление и испытание образцов сериями. Насыщают все образцы водой, часть образцов подвергают попеременному многократному замораживанию и размораживанию. Разрушают сжатием образцы после различного числа замораживаний-размораживаний и без замораживаний-размораживаний. Сопоставляют средние значения пределов прочности образцов серии, испытанных как с замораживанием-размораживанием, так и без него. Определяют относительное снижение предела прочности при разных количествах замораживаний-размораживаний и в качестве марки бетона по морозостойкости принимают число замораживаний-размораживаний, необходимых для снижения предела прочности в пределах, оговоренных стандартом.

Значительный случайный разброс значений предела прочности бетона (коэффициент вариации ρ=15…20%) при неизменных условиях изготовления и испытаний образцов обуславливает большой разброс средних значений предела прочности и требует значительного объема испытаний (количество образцов для испытаний 25…50) для доказательства значимости относительного снижения предела прочности ΔR/R=0,05…0,15 в результате замораживания-размораживания, где R - кратковременный предел прочности, ΔR - абсолютное изменение кратковременного предела прочности. Таким образом, основной недостаток базового способа - трудоемкость и малая оперативность.

Наиболее близок к предлагаемому способ [ГОСТ - 10060.3-95 «Дилатометрический метод ускоренного определения морозостойкости»]. Он включает изготовление бетонных образцов, измерение образцов, определение начального объема, насыщение образцов водой, одновременное замораживание каждого насыщенного водой образца и стандартного образца в дилатометре до нормативной температуры и измерение при этом разности значений объемных деформаций бетонного и стандартного образцов (относительного изменения объема). Марку бетона по морозостойкости определяют по максимальной относительной разности объемных деформаций бетонного и стандартного образцов по приведенным в ГОСТ таблицам с учетом вида бетона, формы и размера образцов.

Однако при использовании приведенных в ГОСТе таблиц приемлемый результат получается лишь для бетонов на портландцементе и шлакопортландцементе без поверхностно-активных добавок (ПАВ), такие бетоны в настоящее время используются крайне редко. А получение таблиц, необходимых для бетонов с ПАВ, требует длительных трудоемких опытов с использованием, например, первого базового способа.

Задача изобретения - расширение арсенала способов ускоренного определения марки бетона по морозостойкости.

Решение задачи достигают тем, что, как и в прототипе, изготавливают серию образцов из одной бетонной смеси, образцы насыщают водой, измеряют образцы, замораживают до нормативной температуры. Но в отличие от прототипа: предварительно неразрушающим методом определяют предел длительной прочности каждого образца в условиях растяжения; образцы размораживают и устанавливают относительную остаточную деформацию каждого образца; по значениям относительной остаточной деформации образца и предела длительной прочности образца в условиях растяжения определяют энергию, рассеянную в единице объема образца в процессе замораживания-размораживания; нагружают каждый образец в условиях одноосного сжатия до экстремальной нагрузки, отвечающей кратковременному пределу прочности; при этом регистрируют значения осевой нагрузки и соответствующие им продольные деформации каждого образца; по полученным значениям осевой нагрузки и соответствующих им продольных деформаций определяют энергию, рассеянную в единице объема образца в процессе его сжатия до экстремальной нагрузки, находят значение марки каждого бетонного образца по морозостойкости как величину, пропорциональную отношению энергии, рассеянной в процессе сжатия до экстремальной нагрузки, к энергии, рассеянной в процессе замораживания-размораживания. Марку бетона по морозостойкости определяют как среднеарифметическое значение найденных марок бетонных образцов по морозостойкости.

Определение относительной остаточной деформации образца и предела длительной прочности образца, при котором начинается необратимое развитие трещин в конкретном образце, позволяет оценить рассеянную на эти процессы энергию в единице объема материала в процессе замораживания-размораживания по формуле:

где Wтц - энергия, рассеянная в единице объема образца в процессе замораживания-размораживания;

θост - относительная остаточная деформация образца;

Rдл - предел длительной прочности образца в условиях растяжения;

k - коэффициент пропорциональности.

k=1, потому что развитие водонаполненной трещины в бетоне приводит к захвату ею близлежащих замкнутых пор, стабилизирующему давление внутри водозаполненной трещины около значения, вызывающего в материале растягивающие напряжения, равные пределу длительной прочности образца в условиях растяжения

Нагружение образца в условиях одноосного сжатия до экстремальной нагрузки, регистрация при этом значений осевой нагрузки и отвечающих им абсолютных продольных деформаций позволяют численным интегрированием зависимости осевой нагрузки от абсолютных продольных деформаций и распределением результата последнего по объему образца найти значение энергии, рассеянной в единице объема образца в процессе его сжатия до экстремальной нагрузки, т.е. до момента перехода бетона от повреждения, рассредоточенного по всему объему образца, к фрагментации магистральной трещины. Значение энергии, рассеянной в единице объема образца в процессе его сжатия до экстремальной нагрузки, пропорционально квадрату кратковременного предела прочности [Ахвердев И.Н. Основы физики бетона. - М., Стройизат, 1981, 464 с.; см. с.425 и формулу 11.16]:

где Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки;

R - кратковременный предел прочности;

α - коэффициент пропорциональности.

После логарифмирования выражения (2) и последующего дифференцирования получаем зависимость между относительным снижением энергии, рассеянной в единице объема образца в процессе его сжатия до экстремальной нагрузки, и относительным снижением кратковременного предела прочности:

где Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки;

ΔW - абсолютное изменение энергии, рассеянной в единице объема образца;

R - кратковременный предел прочности;

ΔR - абсолютное изменение кратковременного предела прочности.

Соотношение (3) позволяет перейти от допускаемого стандартом относительного снижения кратковременного предела прочности для бетона к допустимому для исследуемого образца относительному снижению энергии, рассеянной в единице объема образца:

где Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки;

[ΔW] - допустимое абсолютное изменение энергии, рассеянной в единице объема образца;

R - кратковременный предел прочности;

ΔR - абсолютное изменение кратковременного предела прочности;

[ΔR/R] - допускаемое стандартом относительное изменение кратковременного предела прочности.

При этом марка бетонного образца по морозостойкости будет определяться как количество замораживаний-размораживаний, на каждый из которых затрачивается энергия, рассеянная в единице объема образца в процессе замораживания-размораживания, в пределах допустимого абсолютного изменения энергии, рассеянной в единице объема образца:

где Fобр - марка бетонного образца по морозостойкости;

[ΔW] - допустимое абсолютное изменение энергии, рассеянной в единице объема образца;

Wтц - энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания.

Способ реализуют следующим образом. Из бетонной смеси требуемого состава изготавливают образцы в виде цилиндров или кубов с ребром 10 см. После твердения в условиях, близких к условиям твердения бетона, образцы насыщают водой, обмеряют и для каждого образца неразрушающим методом, например [Экспресс-методы оценки для стойкости/материалы III мк «Популярное бетоноведение», - февраль-март 2009, СПБ: СПГПУ]*, определяют в условиях растяжения наибольшую неразрушающую нагрузку Lо, без превышения которой трещины в образце еще не развиваются. Растягивающие напряжения в цилиндрах или кубах целесообразно создавать их сжатием по линиям контакта цилиндров с плоскостью (раскалыванием). Зная Lо, можно рассчитать предел длительной прочности для испытанного образца:

где S - площадь сечения образца, перпендикулярного плоскости сжатия;

Lо - наибольшая неразрушающая нагрузка образца в условиях растяжения;

Rдл - предел длительной прочности образца в условиях растяжения.

После замораживают и размораживают образец до нормативных температур, определяют относительную остаточную деформацию образца и находят энергию, рассеянную в единице объема образца в процессе его замораживания-размораживания по формуле (1):

Wтц=kθост·Rдл,

где Wтц - энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания;

θост - относительная остаточная деформация образца;

Rдл - предел длительной прочности образца в условиях растяжения;

k - коэффициент пропорциональности.

Далее образец сжимают в условиях одноосного сжатия до экстремальной нагрузки, т.е. до тех пор, пока нагрузка не начинает падать, и регистрируют текущие значения осевой нагрузки и соответствующие им значения продольной деформации образца. Численное интегрирование зависимости осевой нагрузки от абсолютных продольных деформаций и распределение результата последнего по объему образца позволяют найти энергию, рассеянную в единице объема материала до достижения экстремальной нагрузки. По полученным результатам рассчитывают марку по морозостойкости для конкретного образца:

где Fобр - марка бетонного образца по морозостойкости;

Wтц - энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания;

Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки;

R - кратковременный предел прочности;

ΔR - абсолютное изменение кратковременного предела прочности;

[ΔR/R] - допустимое стандартом относительное изменение кратковременного предела прочности.

Марку бетона по морозостойкости находят как среднее значений марок по морозостойкости для образцов. Доверительный интервал марки бетона по морозостойкости рассчитывают по дисперсии значений марок по морозостойкости для серии образцов.

В частности, способ реализован на 10 образцах-кубах, ребром 10 см в возрасте 88 дней, изготовленных из бетонной смеси такого состава: портландцемент марки 400-1 весовая часть, песок - 2 весовые части, гранитного щебня 5…20 мм - 4,5 весовые части, воды - 0,6 весовой части. Экспериментально установлено двумя разными способами для этого бетона в возрасте 88 дней, что после 105 замораживаний-размораживаний, соответствующих марке этого бетона по морозостойкости, среднее относительное снижение предела прочности составляет 0,142 по способу [Инженерно-строительный журнал, 2008, №2, стр.40-44, СПБ: СПБГПУ] и 0,16 по первому базовому способу [ГОСТ - 10060.1-95. «Базовый метод определения морозостойкости»], то есть оба значения лежат в пределах погрешности использованных способов. В среднем относительное снижение предела прочности составляет 15%.

Образцы насыщали водой по п.4 ГОСТ 10060.0-95. «Методы определения морозостойкости. Общие требования», обмеряли и регистрировали объем. Для каждого насыщенного водой куба раскалыванием по п.5.4 ГОСТ 10180-90. «Методы определения прочности по контрольным образцам» (схема II, прил.9) трижды определяли значение наибольшей неразрушающей нагрузки, без превышения которой трещины в образце еще не развиваются необратимо. После каждого испытания меняли плоскость сжатия образца на перпендикулярную плоскость предшествующему сжатию. Определение наибольшей неразрушающей нагрузки проводили с помощью акустического эмиссионного способа (АЭ)*, используя АЭ-комплекс АФ-15 Кишеневского завода. Акустические датчики с частотой 20-200 кГц устанавливали на грани образца, параллельной плоскости сжатия. Для создания осевой нагрузки использовали гидравлический пресс. Получив значение наибольшей неразрушающей нагрузки, рассчитывали соответствующее значение предела длительной прочности, а затем среднее значение предела длительной прочности, приведенное в таблице.

Насыщенные водой образцы помещали в измерительную камеру дифференциального объемного дилатометра ДОД-100-К, а во вторую его камеру помещали стандартный алюминиевый образец. Обе камеры заполняли керосином и герметизировали. Дилатометр с образцами устанавливали в морозильную камеру и после 30 мин выдержки начинали замораживание со скоростью 0,3°C/мин до достижения температуры (20±2)°C. По графику показателя разностей объемных деформации бетонного и алюминиевого образца находили значение остаточной относительной объемной деформации бетонного образца и рассчитывали для каждого образца энергию, рассеянную в процессе его замораживания-размораживания по формуле (1):

где Wтц - энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания;

θост - относительная остаточная деформация образца;

Rдл - предел длительной прочности образца в условиях растяжения;

k - коэффициент пропорциональности.

Далее определяли среднее значение предела длительной прочности образца в условиях растяжения R¯дл как среднеарифметическое значений Rдл пределов длительной прочности в условиях растяжения.

Осевое сжатие образцов со скоростью 400 кг/сек осуществляли на гидравлическом прессе, оснащенном графопостроителем зависимости осевой нагрузки от продольной деформации. Значения на динамометре определяются по положению ведомой и ведущей стрелок, являющихся частью замкнутой электронной цепи с контрольной лампочкой. Плавное разгружение образца начинали по сигналу контрольной лампочки, выключаемой электроконтактами на ведомой и ведущей стрелке динамометра, так как при начале разрушения образца ведущая стрелка размыкается с ведомой, которая остается в прежнем положении. Значение максимальной нагрузки регистрирует ведомая стрелка динамометра пресса. По полученной на графопостроителе зависимости определяли площадь под ней, т.е. получали энергию, рассеянную в объеме образца в процессе его сжатия до экстремальной нагрузки. Энергию, рассеянную в единице образца, получали по формуле (8):

где W - энергия, рассеянная в объеме образца в процессе его сжатия до экстремальной нагрузки;

V - объем образца;

Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки.

Затем для каждого образца рассчитывали (см. таблицу) марку бетонного образца по морозостойкости F15i как количество замораживаний-размораживаний, необходимых для снижения его предела прочности на 15% по формуле (7):

где F15i - марка бетонного образца по морозостойкости;

Wтц - энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания;

Wсж - энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки;

R - кратковременный предел прочности;

ΔR - абсолютное изменение кратковременного предела прочности;

[ΔR/R] - допустимое стандартом относительное изменение кратковременного предела прочности.

Далее рассчитывали среднее F¯15 для значений марки F15i, а также среднее квадратичное отклонение результатов опыта:

где S - среднее квадратичное отклонение результатов опыта;

F15i - марка i-го бетонного образца по морозостойкости при снижении предела его прочности на 15%, полученная предлагаемым способом; где i - от 1 до 10;

F¯15 - марка бетона по морозостойкости, равная среднеарифметическому значению марок серии бетонных образцов при снижении предела их прочности на 15%.

Среднее квадратичное отклонение значений F15i оказалось равным 16. С учетом этого расхождение среднего значения марки по морозостойкости бетона F¯15=99,7 и ранее экспериментально найденного числа циклов 105 (марка F15), необходимых для снижения R на 15%, можно считать случайным, а предложенный способ корректным.

Таблица
Номер i-го образца Среднее значение предела длительной прочности образца в условиях растяжения R¯дл , МПа Относительная остаточная деформация образца θост·104 Энергия, рассеянная в единице объема образца в процессе его замораживания-размораживания Wтц·104 , МПа Энергия, рассеянная в единице объема образца в процессе его сжатия до экстремальной нагрузки Wсж·10, МПа Допустимое абсолютное изменение энергии, рассеянной в единице объема образца [ΔW]·102,МПа Количество циклов, необходимых для снижения предела прочности каждого образца на 15% F15i
1 1,5 2,7 4,05 0,9990 2,997 74
2 1,7 3,1 5,27 1,7215 5,165 98
3 1,8 1,8 3,24 1,2312 3,694 114
4 1,9 2,6 4,90 1,6796 5,039 102
5 2,0 2,5 5,00 1,4333 4,300 86
6 2,1 1,9 4,00 1,4364 4,309 108
7 2,2 2,6 5,72 2,2308 6,692 117
8 2,3 2,1 4,83 1,3846 4,154 86
9 2,9 1,8 5,22 1,6008 4,802 92
10 3,1 1,5 4,65 1,8600 0,558 120
Среднее 2,15 2,1 4,69 1,5577 99,7

Таким образом показано, что предложенный способ расширяет арсенал технических средств ускоренного определения марки бетона по морозостойкости. Длительность определения морозостойкости обуславливается, по сути, временем насыщения образца водой (4 дня по п.4 ГОСТ 10060.0. «Методы определения морозостойкости. Общие требования»).

Способ определения марки бетона по морозостойкости, включающий изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание до нормативной температуры, отличающийся тем, что предварительно определяют предел длительной прочности каждого образца неразрушающим методом в условиях растяжения, а после размораживания определяют относительную остаточную деформацию образцов и энергию, рассеянную в единице объема каждого образца в процессе его замораживания-размораживания, далее нагружают образцы в условиях одноосного сжатия до экстремальной нагрузки, отвечающей кратковременному пределу прочности, определяют энергию, рассеянную в единице объема каждого образца в процессе его сжатия до экстремальной нагрузки, и по полученным результатам рассчитывают марку по морозостойкости каждого образца как величину, пропорциональную отношению энергии, рассеянной в единице объема образца в процессе сжатия до экстремальной нагрузки, к энергии, рассеянной в единице объема образца в процессе его замораживания-размораживания, а марку бетона по морозостойкости определяют как среднеарифметическое значение марок по морозостойкости серии образцов.

www.findpatent.ru

Бетоны. Ускоренные методы определения морозостойкости при многократном замораживании и оттаивании

ГОСТ 10060.2-95

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ

УСКОРЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ПРИ МНОГОВАРИАНТНОМ ЗАМОРАЖИВАНИИ И ОТТАИВАНИИ

МЕЖГОСУДАРСТВЕННАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОМИССИЯ ПО СТАНДАРТИЗАЦИИ И ТЕХНИЧЕСКОМУ НОРМИРОВАНИЮ В СТРОИТЕЛЬСТВЕ (МНТКС)

Москва

Предисловие

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Российской Федерации

ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 22 ноября 1995 г.

За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан

Госкомархитектстрой Республики Узбекистан

3 ВЗАМЕН ГОСТ 10060-87 в части второго и третьего методов определения морозостойкости

4 ВВЕДЕН в действие с 1 сентября 1996 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 5 марта 1996 г. № 18-17

СОДЕРЖАНИЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ

УСКОРЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ПРИ МНОГОКРАТНОМ ЗАМОРАЖИВАНИИ И ОТТАИВАНИИ

CONCRETES, RAPID METHOD FOR THE DETERMINATION

OF FROST-RESISTANCE BY REPEATED ALTERNATED FREEZING AND THAWING

Дата введения 1996-09-01

Настоящий стандарт распространяется на тяжелые, мелкозернистые и легкие бетоны, кроме легких со средней плотностью менее D1500, и плотные силикатные бетоны.

Стандарт устанавливает базовый для бетонов дорожных и аэродромных покрытий (второй) и ускоренные для всех видов бетонов (второй и третий) методы определения морозостойкости при многократном замораживании и оттаивании в растворе соли.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 4233-77 Натрий хлористый. Технические условия.

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

В настоящем стандарте приняты термины и определения по ГОСТ 10060.0.

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2) °С (второй метод) и до минус (50±5) °С (третий метод).

4.3 Технические весы, обеспечивающие точность измерения, соответствующей метрологической обеспеченности метода.

4.4 Хлористый натрий по ГОСТ 4233.

4.5 Вода по ГОСТ 23732.

4.6 Деревянные прокладки треугольного сечения высотой 50 мм.

4.7 Ванна для насыщения образцов 5 %-ным водным раствором хлористого натрия.

4.8 Ванна для оттаивания образцов бетона, оборудованная устройством для поддержания температуры раствора хлористого натрия в пределах (18±2) °С.

4.9 Емкости для испытания образцов на морозостойкость длиной, шириной, высотой соответственно 90´90´110 и 120´120´140 мм, имеют толщину стенок (1,0±0,5) мм.

4.10 Сетчатый контейнер для размещения основных образцов.

4.11 Сетчатый стеллаж для размещения образцов в морозильной камере.

Примечание - Ванны, емкости и стеллажи изготавливают из коррозионно-стойкой (нержавеющей) стали или другого коррозионно-стойкого материала.

5.1 Бетонные образцы изготавливают и отбирают по 4.5 - 4.10 ГОСТ 10060.0.

5.2 Основные и контрольные образцы бетона перед испытанием насыщают 5%-ным водным раствором хлористого натрия при температуре (18±2)°С по 4.11 ГОСТ 10060.0.

5.3 Контрольные образцы через 2 - 4 ч после извлечения из раствора испытывают на сжатие по ГОСТ 10180, а для серии образцов бетона дорожного и аэродромного покрытия дополнительно определяют массу образцов.

Основные образцы после насыщения подвергают испытаниям на замораживание и оттаивание.

6.1.1 Условия загружения в морозильную камеру и замораживания образцов принимают по 6.2 - 6.5 ГОСТ 10060.1.

6.1.2 Раствор хлористого натрия в ванне для оттаивания меняют каждые 100 циклов замораживания и оттаивания.

6.1.3 Основные образцы через 2 - 4 ч после проведения соответствующего числа циклов замораживания и оттаивания извлекают из ванны и испытывают по ГОСТ 10180, а для серии образцов бетона дорожного и аэродромного покрытия дополнительно определяют массу основных образцов.

6.2.1 Основные образцы, насыщенные 5 %-ным водным раствором хлористого натрия, помещают в заполненную таким же раствором емкость для испытания образцов на морозостойкость. Образцы устанавливают на две деревянные прокладки, при этом расстояние между образцами и стенками емкости должно быть (10±2) мм, слой раствора над поверхностью образцов должен быть не менее 10 мм.

6.2.2 Число циклов замораживания и оттаивания принимают по таблице 3 ГОСТ 10060.0.

6.2.3 Раствор хлористого натрия в емкости для замораживания и оттаивания меняют через каждые 20 циклов.

6.2.4 Основные образцы помещают в морозильную камеру при температуре воздуха в ней не выше 10 °С в закрытых сверху емкостях так, чтобы расстояние между стенками емкостей и камеры было не менее 50 мм. После установления в закрытой камере температуры минус 10 °С температуру понижают в течение (2,5±0,5) ч до минус (50-55)°С и делают выдержку (2,5±0,5) ч. Далее температуру в камере повышают в течение (1,5±0,5) ч до минус 10 °С, и при этой температуре выгружают из нее емкости с образцами.

При замораживании кубов с ребром 70 мм время понижения и выдерживания температуры уменьшают на 1 ч.

6.2.5 Кубы с ребром 100 мм оттаивают в течение (2,5±0,5) ч, с ребром 70 мм - (1,5±0,5) ч в ванне с 5 %-ным водным раствором хлористого натрия температурой (18±2) °С. При этом емкости погружают в ванну таким образом, чтобы каждая из них была окружена слоем раствора не менее 50 мм.

6.2.6 Основные образцы через 2 - 4 ч после извлечения из емкости испытывают на сжатие по ГОСТ 10180. Для бетона дорожного и аэродромного покрытия предварительно определяют массу образцов.

7.1 Марку бетона по морозостойкости принимают за соответствующую требуемой, если среднее значение прочности на сжатие основных образцов после установленных (таблица 3 ГОСТ 10060.0) для данной марки числа циклов переменного замораживания и оттаивания уменьшилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Для бетонов дорожных и аэродромных покрытий потеря массы основных образцов не должна превышать 3 %.

7.2 Если среднее значение прочности бетона на сжатие основных образцов после промежуточных испытаний по сравнению со средним значением прочности бетона на сжатие серии контрольных образцов уменьшилась более чем на 5 % или уменьшение среднего значения массы серии основных образцов бетонов дорожных и аэродромных покрытий превысило 3 %, то испытания прекращают и в журнале испытаний делают запись, что бетон не соответствует требуемой марке по морозостойкости.

7.3 Среднюю прочность бетона серии контрольных и основных образцов определяют по ГОСТ 10180.

Уменьшение массы для бетонов дорожных и аэродромных покрытий определяют сравнением среднеарифметической массы серии основных образцов после промежуточных и итоговых испытаний со среднеарифметическим значением массы основных образцов до испытания.

Ключевые слова: испытание по второму методу, испытание по третьему методу, правила обработки результатов испытаний

aquagroup.ru

Определение морозостойкости бетона

Морозостойкость – способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения, без определенного снижения прочности, а в ряде случаев – без определенной потери массы.

Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без видимых признаков разрушения и определенного снижения прочности и потери массы.

Существуют следующие методы определения морозостойкости бетона:

1. Базовый для всех видов бетона, кроме бетонов дорожных и аэродромных покрытий.

2. Базовый для бетонов дорожных и аэродромных покрытий и ускоренный для других видов тяжелого бетона.

3. Ускоренный для бетонов дорожных и аэродромных покрытий и других видов тяжелого бетона.

4. Ускоренный при однократном замораживании – дилатометрический.

5. Ускоренный при однократном замораживании – структурно-механический.

Четвертый и пятый методы применяются для всех бетонов, кроме бетонов дорожных и аэродромных покрытий, при этом последний метод предназначен для оценки морозостойкости бетона при подборе и корректировке его состава и не применяется для контроля этого показателя качества бетона.

В данной работе рассматриваются первые три метода определения морозостойкости бетона как наиболее часто применяемые на практике.

Размеры и количество образцов, а также среда для их испытаний в каждом из этих методов приведены в таблице 11.

Контрольными называют образцы, которые испытывают на сжатие через 2-4 ч после первоначального насыщения водой или водным раствором соли.

Основными называют образцы, которые испытывают на сжатие через

2-4 ч после проведения заданного количества циклов попеременного замораживания в морозильной камере и оттаивания в ванне с водой или водным раствором соли. Первоначальное насыщение образцов бетона водой или водным раствором соли производится при температуре (18+2)°С пу­тем погружения в ванну с водой или водным раствором соли на 1/3 их высоты с последующим выдерживанием в течение 24 ч, затем погружением на 2/3

высоты с выдерживанием 24 ч и, наконец, полным погружением (образцы должны быть окружены водой со всех сторон слоем не менее 20 мм) с выдерживанием в течение 48 ч.

Таблица 11

Размеры и количество образцов, среда для их испытаний

 

 

Метод определе- ния морозо- стойкости   Размеры образцов-кубов, мм Среда Число образцов
насы-щения   заморажи-вания   оттаи-вания   контроль-ных   основ-ных  
      100x100x100 или 150x150x150   100x100x100 или 150x150x150   100x100x100 или 70x70x70 Вода   5%- ный раствор NaCl   5%- ный раствор NaCl Воздух   Воздух   5%- ный раствор NaCl Вода   5%- ный раствор NaCl   5%- ный раствор NaCl          

 

Режимы замораживания и оттаивания образцов в первом и втором методах приведены в табл. 12.

 

Таблица12

 

Режимы замораживания и оттаивания образцов в первом и втором методах

 

  Размеры образцов   Режимы
замораживания оттаивания
время, не менее, ч температура 0С время, ч температура 0С
100x100x100   150x150x150   2,5   3,5     -(18±2)     2±0,5   3±0,5     +(18±2)    

 

 

В третьем методе замораживание ведут так: понижают температуру до минус 50-55°С в течение (2,5±0,5) ч, затем выдерживают при этой температуре еще (2,5±0,5) ч, затем повышают температуру до минус 10°С в течение

(1,5±0,5) ч и после этого выгружают из морозильной камеры. Оттаивание ве­дут в течение в (2,5±0,5) ч при температуре +(18+2)0С.

При замораживании кубов с ребром 70 мм время понижения и выдерживания температуры, а также оттаивание образцов уменьшают на 1 час.

В первом и втором методах воду или водный раствор соли в ванне для оттаивания меняют на свежий через каждые 50 циклов, а в третьем методе ─ через каждые 5 циклов.

Количество циклов замораживания и оттаивания, после которых должно производиться испытание образцов на сжатие, а такжеопределяться потеря массы для бетонов дорожных и аэро­дромных покрытий, для заданной марки бетона по морозостойкости приведено в таблице 13.

Марку бетона по морозостойкости считают соответствующей требуемой, если снижение средней прочности основных образцов после установленного числа циклов замораживания и оттаивания по сравнению со средней прочностью контрольных образцов будет не более чем на 5 %, а для бетона дорожных и аэродромных покрытий кроме того не должно быть потери массы более чем на 3 %. В первом и втором методах устанавливается промежуточное число циклов, после которых должно произво­диться испытание основных образцов на сжатие.

Если среднее значение прочности образцов после промежуточных циклов будет меньше средней прочности контрольных образцов более чем на 5 % или для бетонов дорожных и аэродромных покрытий потеря массы будет больше чем на 3 %, то дальней­шее испытание следует прекратить и марку бетона по морозо­стойкости считать не соответствующей требуемой.

Испытание бетона на морозостойкость классическими (базовыми) методами имеет особенность, связанную с поведением цементной составляющей в процессе испытаний. В бетоне, даже после набора им марочной прочности, остается заметное количество зерен цемента, не полностью прореагировавших с водой, т.е. способных к твердению. Гидратация этой части при испытании на морозостойкость может происходить в период оттаивания образцов в воде. Таким образом, в процессе испытаний одновременно протекают два конкурирующих процесса: деструктивный ─ разрушение цементного камня при замораживании, и конструктивный ─ рост прочности цементного камня во время нахождения образцов в воде. в начале испытаний суммарный эффект может быть положительным, т.е. прочность бетона даже увеличивается. Затем начинает превалировать процесс деструкции, и прочность снижается. Поэтому при испытании бетона на морозостойкость по базовым методам нормативная потеря прочности, указывающая на окончание испытаний, составляет всего 5% от начальной прочности бетона, в то время как при испытании кирпича нормативная потеря прочности составляет 15%.

Таблица 13

Марка бетона по морозостойкости

 

Метод испытания Число циклов замораживания-оттаивания для бетона марки
F50 F75 F100 F150 F200 F300 F400 F500 F600 F800 F1000
Первый метод   35 * 50 75 100 150 200 300 400 500 600 800
Второй метод Для бетонов дорож-ных и аэродромных покрытий 35 50 75 100 150 200 300 400 500 600 800    
Ускоренный для других бетонов - -. -. 20 30 45 75 110 150 200 300    
Третий метод Ускоренный для бетонов дорожных и аэродромных покрытий   -   -                      
  Ускоренный для других бетонов   -                      

* - Над чертой указано число циклов, после которого производится промежуточное испытание, под чертой – число циклов, соответствующее марке бетона по морозостойкости.

 

Контрольные вопросы

1. Какими показателями характеризуют качество тяжелого бетона?

2. Что такое класс и марка бетона по прочности на сжатие?

3. Как изготавливают и испытывают образцы для определения прочности бетона на сжатие?

4. Как рассчитывают прочность отдельных образцов и среднюю прочность бетона на сжатие?

5. В чем заключается принцип определения прочности бетона неразрушающими методами? Какими они бывают?

6. Как строится градуировочная зависимость в неразрушающих методах испытаний бетона?

7. Какой метод неразрушающих механических испытаний реализуется с помощью молотка Кашкарова?

8. Каким методом и как определяют прочность бетона на сжатие с помощью склерометра ОМШ-1?

9. Что такое морозостойкость материала, чем она характеризуется и от чего зависит?

10. Какие существуют методы определения морозостойкости бетонов?

11. Как определяется морозостойкость всех видов тяжелого бетона, кроме бетонов дорожных и аэродромных покрытий?

12. Как определяется морозостойкость бетонов дорожных и аэродромных покрытий?

 

VI. ДРЕВЕСНЫЕ МАТЕРИАЛЫ

 

Древесиной называют освобожденную от коры ткань волокон, которая содержится в стволе дерева.

Древесина обладает рядом ценных свойств: небольшой плотностью, высокой прочностью, малой теплопроводностью, гибкостью и упругостью, высоким коэффициентом конструктивного качества. Однако при использовании древесины в строительстве необходимо учитывать такие недостатки этого материала, зависящие от его строения и состава, как неоднородность свойств по объему и направлению (анизотропия), гигроскопичность, приводящая к изменению размеров, короблению и растрескиванию, загнивание во влажных условиях и возгорание при действии высоких температур.

 

Лабораторная работа №10



infopedia.su

ГОСТ 10060.1-95. Бетоны. Базовый метод определения морозостойкости

ГОСТ 10060.1-95 определяет первый базовый метод определения морозостойкости всех видов бетона, исключая бетоны на покрытиях аэродромов и автомобильных дорог. В настоящем стандарте приводятся ссылки на ГОСТ 10060.0-95, ГОСТ 10180-90, ГОСТ 23732-79, содержащие требования к различным методам определения морозостойкости бетонов. ГОСТ 10060.1-95 введен в действие 1.09.96г.

 

 

 

ГОСТ 10060.1-95

Группа Ж19

 

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

 

БЕТОНЫ

БАЗОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ

Concretes. Basic method for the determination

of frost-resistance

 

ОКС 91.100.30

ОКСТУ 5879

 

Дата введения 1996-09-01 

 

Предисловие 

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Российской Федерации

ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 22 ноября 1995 г.

За принятие проголосовали

 

 

Наименование государства

Наименование органа государственного управления строительством 

Азербайджанская Республика 

Госстрой Азербайджанской Республики

Республика Армения 

Госупрархитектуры Республики Армения

Республика Казахстан 

Минстрой Республики Казахстан

Кыргызская Республика 

Госстрой Кыргызской Республики

Республика Молдова 

Минархстрой Республики Молдова

Российская Федерация 

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан 

Госкомархитектстрой Республики Узбекистан

 

3 ВЗАМЕН ГОСТ 10060-87 в части первого метода определения морозостойкости

4 ВВЕДЕН В ДЕЙСТВИЕ с 1 сентября 1996 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 5 марта 1996 г. N 18-17

 

1 Область применения

 

Настоящий стандарт распространяется на все виды бетонов, кроме бетонов дорожных и аэродромных покрытий, и устанавливает базовый (первый) метод определения морозостойкости.

 

2 Нормативные ссылки

 

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

 

3 Определения

 

В настоящем стандарте приняты термины и определения по ГОСТ 10060.0.

 

4 Средства испытания и вспомогательные устройства 

 

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2) °С.

4.3 Технические весы, обеспечивающие точность измерения в соответствии с метрологической обеспеченностью метода.

4.4 Ванны для насыщения и оттаивания образцов с устройством для поддержания температуры воды (18±2) °С.

4.5 Сетчатый контейнер для размещения основных образцов.

4.6 Сетчатый стеллаж для размещения образцов в морозильной камере.

4.7 Вода по ГОСТ 23732.

 

5 Порядок подготовки к проведению испытаний

 

5.1 Бетонные образцы изготовляют и отбирают по 4.5-4.10 ГОСТ 10060.0.

5.2 Контрольные и основные образцы насыщают водой по 4.11 ГОСТ 10060.0.

 

6 Порядок проведения испытаний

 

6.1 Контрольные образцы через 2-4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

6.2 Основные образцы загружают в морозильную камеру в контейнере или устанавливают на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считают момент установления в камере температуры минус 16 °С.

6.3 Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, устанавливают в соответствии с таблицей 3 ГОСТ 10060.0. В каждом возрасте испытывают по шесть основных образцов.

6.4 Образцы испытывают по режиму, указанному в таблице 1.

 

Таблица 1

 

 

 

 

 

 

 

Режим испытаний

 

Размер образца, мм

 

Замораживание

 

Оттаивание

 

 

 

время, не менее, ч

 

температура, °С

 

время, ч

 

температура, °С

 

100х100х100

 

2,5

 

 

 

2±0,5

 

 

 

150х150х150

 

3,5

 

минус 18±2

 

3,0±0,5

 

18±2

 

200х200х200

 

5,5

 

 

 

5,0±0,5

 

 

 

 

Примечание - Минимальную продолжительность замораживания увеличивают для легких бетонов со средней плотностью D1500-D1200 на 0,5 ч, со средней плотностью D1200-D1000 - на 1 ч, со средней плотностью D900 и менее - на 1,5 ч.

 

6.5 Образцы после замораживания оттаивают в ванне с водой при температуре (18±2) °С. Образцы размещают, как указано в 6.2, при этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

6.6 Температуру воздуха в морозильной камере измеряют в центре ее объема в непосредственной близости от образцов.

6.7 Воду в ванне для оттаивания образцов меняют через каждые 100 циклов переменного замораживания и оттаивания.

6.8 Основные образцы через 2-4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

 

7 Правила обработки результатов испытаний

 

7.1 Марку бетона по морозостойкости принимают за соответствующую требуемой, если среднее значение прочности на сжатие основных образцов после установленных (таблица 3 ГОСТ 10060.0) для данной марки числа циклов переменного замораживания и оттаивания уменьшилось не более чем на 5% по сравнению со средней прочностью на сжатие контрольных образцов.

Уменьшение прочности на сжатие основных образцов по сравнению со средней прочностью контрольных образцов легкого бетона с маркой по морозостойкости F50 и менее не должно превышать 15% при условии выполнения требований 4.14 ГОСТ 10060.0.

7.2 Если уменьшение среднего значения прочности основных образцов после промежуточных испытаний по сравнению со средним значением прочности на сжатие контрольных образцов бетона превышает значения, указанные в 7.1, то испытание прекращают и в журнале испытаний делают запись, что бетон не соответствует требуемой марке по морозостойкости.

7.3 Среднюю прочность бетона серии контрольных и основных образцов определяют по ГОСТ 10180.

7.4 Исходные данные и результаты испытания контрольных и основных образцов бетона заносят в журнал испытания по форме, приведенной в приложении А ГОСТ 10060.0.

 

 

Текст документа сверен по:

официальное издание

М.: Минстрой России, ГУП ЦПП, 1997

www.avtobeton.ru


Смотрите также